Section 4.7

Integration using Completing the square

Let's review how to complete the square

- $(x+5)^{2}=$
$x^{2}-12 x+36=$
- $x^{2}+4 x+7$
$3 x^{2}-30 x+45$
- $x^{2}-8 x+9$
$x^{2}+5 x-3$
- $x^{2}+12 x-4$

$$
2 x^{2}+15 x+1
$$

$$
\int \frac{1}{x^{2}-6 x+13} d x
$$

- Should I do long division?
- U-sub?
- Partial Fractions?
- What if I complete the square of the denominator?

No, not an improper fraction.

No, numerator is not the derivative of denominator

No, can't factor the denominator.

$$
\int \frac{1}{x^{2}-6 x+13} d x
$$

$$
\int \frac{2 x+2}{x^{2}+8 x+20} d x
$$

- Should I do long division?
- Partial Fractions?
- U-sub?
- But could I make it the derivative?

No, not an improper fraction.

No, can't factor the denominator.

No, numerator is not the derivative of denominator,

$$
\int \frac{2 x+2}{x^{2}+8 x+20} d x
$$

Find the area of the region bounded by the graph of $f(x)=\frac{1}{\sqrt{1-2 x-x^{2}}}$ and the lines $x=-1$ and $x=0$.

