Sections 9.2 and 9.3 Parametric Equations

Graphing, Eliminating the Parameter, and finding the first derivative

Types of Functions

Single-Variable

 Multi-VariableParametric

Single Variable Functions

Until now, all the functions we have studied have had one independent and one dependent variable.

Independent
Variables you control

Dependent
What results

$$
f(x)=x^{2}
$$

The Calculus of these types of functions is known as Single-Variable Calculus because the functions have a single independent variable.

Examples of Single-variable Functions

Pressure

$$
f(x)=x^{2}
$$

Multivariable Functions

But you can have more than one independent variable.

The Calculus of these types of functions is known as Multi-Variable Calculus because the functions have more than one independent variable. You will study these in Calculus III.

Example:

Pressure
Volume

Which brings us to Parametrics

Multivariable

$$
f(x, y)=x^{2}+y^{2}
$$

Multiple independent variables
One function value

Parametric

$$
\begin{aligned}
& x=t^{2}+\cos t \\
& y=t^{2}+\sin t
\end{aligned}
$$

One independent variable (the "parameter")

Multiple function values

Parametric Example

t is in years
$x(t)=4 \cos t+5$ represents the population of field mice $y(t)=2 \sin t+5$ represents the population of hawks

There are times when we need to describe motion (or a curve) that is not a function.

We can do this by writing equations for the x and y coordinates in terms of a third variable (usually time or θ).

$$
x=f(t) \quad y=g(t)
$$

Each parametric equation gives one of the coordinates of position at a certain time.

Parametric Equations can be used to answer questions of where and when.

Example: Write a set of parametric equations for the line $y=\frac{1}{2} x+3$

One possible answer

$$
A:\left\{\begin{array}{l}
x=t \\
y=\frac{1}{2} t+3
\end{array}\right.
$$

Another possible answer

$$
B:\left\{\begin{array}{l}
x=2 t \\
y=\frac{1}{2}(2 t)+3=t+3
\end{array}\right.
$$

Graphs look the same, but parametric equations show location at a certain time.

When $t=4$, Graph A is at $(4,5)$ and Graph B is at $(8,7)$
Both are traveling along the same line, just B is traveling faster

View the equations on your calculator.

Example:

Make a table of values and sketch the curve, indicating the direction of the curve. Then eliminate the parameter.

$$
x=\sqrt{t}, \quad y=t+1
$$

We can only use nonnegative values for t.

To eliminate the parameter, solve one equation for t, and substitute into the other.

$$
\begin{array}{ll}
x=\sqrt{t} & y=t+1 \\
x^{2}=t & y=x^{2}+1
\end{array}
$$

To make the equation match the graph, we must restrict x to be greater than or equal to zero.

$$
y=x^{2}+1, x \geq 0
$$

Graph the plane curve represented by the parametric equations

$$
x=3+2 \cos t, \quad y=-1+3 \sin t ; \quad 0 \leq t \leq 2 \pi
$$

t	x	y	(x, y)
0	5	-1	$(5,-1)$
$\frac{\pi}{2}$	3	2	$(3,2)$
π	1	-1	$(1,-1)$
$\frac{3 \pi}{2}$	3	-4	$(3,-4)$
2π	5	-1	$(5,-1)$

Now, eliminate the parameter. Based on our curve wed expect to get the equation of an ellipse.
$x=3+2 \cos t, \quad y=-1+3 \sin t ; \quad 0 \leq t \leq 2 \pi$
When you want to eliminate the
$x-3=2 \cos t, \quad y+1=3 \sin t \quad$ parameter and you have trig
$\frac{x-3}{2}=\cos t \quad \frac{y+1}{3}=\sin t$
$\sin ^{2} t+\cos ^{2} t=1$
$\left(\frac{y+1}{3}\right)^{2}+\left(\frac{x-3}{2}\right)^{2}=1$
$\frac{(y+1)^{2}}{9}+\frac{(x-3)^{2}}{4}=1$
$\frac{d y}{d t}=$ Change in y over time
Tells you if the path is moving up or down
$\frac{d x}{d t}=$ Change in x over time
Tells you if the path is moving left or right
$\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=$ Slope of tangent line to the curve

Given: $\left\{\begin{array}{l}x=4 \sin t \\ y=2 \cos t\end{array} \quad\right.$ Find $\mathrm{dx} / \mathrm{dt}, \mathrm{dy} / \mathrm{dt}$, and $\mathrm{dy} / \mathrm{dx}$ at $\mathrm{t}=\pi / 4$
$\frac{d x}{d t}=\left.4 \cos t \quad \frac{d x}{d t}\right|_{t=\frac{\pi}{4}}=4\left(\frac{\sqrt{2}}{2}\right)=2 \sqrt{2}$
Positive change indicates the path is moving right
$\frac{d y}{d t}=-\left.2 \sin t \quad \frac{d y}{d t}\right|_{t=\frac{\pi}{4}}=-2\left(\frac{\sqrt{2}}{2}\right)=-\sqrt{2}$
Negative change indicates the path is moving down

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-2 \sin t}{4 \cos t}=\left.\frac{-1}{2} \tan t \quad \frac{d y}{d x}\right|_{t=\frac{\pi}{4}}=\frac{-\sqrt{2}}{2 \sqrt{2}}=\frac{-1}{2}
$$

Example: Describe the movement and write an equation of the tangent line when $\mathrm{t}=\mathrm{l}$

$$
\left\{\begin{array}{l}
x=2 t^{2}+t \\
y=t^{3}+2 t^{2}+t
\end{array}\right.
$$

Example: Find all the points of vertical and horizontal tangency.

$$
\left\{\begin{array}{l}
x=t^{2}+t \\
y=t^{2}-3 t+5
\end{array}\right.
$$

Practice:

- p. 650 \#I, 3, 9, I5, I7, 23
- p. 657 \#I7, 2I, 23, and describe the movement of the particle, $3 \mathrm{I}, 35,39$

More Parametric Equations

Second Derivatives and Arc Length

Second Derivatives

$$
\begin{gathered}
x=\sin t \\
y=t^{2}+1
\end{gathered} \quad \text { Find } \frac{d y}{d x}=\frac{2 t}{\cos t}
$$

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

To find the second derivative of a parametrized curve, we find the derivative of the first derivative:

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(y^{\prime}\right)=\frac{d}{d x}\left(\frac{2 t}{\cos t}\right)=\frac{\cos t(2)-2 t(-\sin t)}{\cos ^{2} t} \cdot\left(\frac{d t}{d x}\right)
$$

$$
=\frac{\cos t(2)-2 t(-\sin t)}{\cos ^{2} t} \div\left(\frac{d x}{d t}\right)
$$

Change to division because we know $d x / d t$, not dt/dx
$=\frac{\cos t(2)-2 t(-\sin t)}{\cos ^{2} t} \div \cos t=\frac{\cos t(2)-2 t(-\sin t)}{\cos ^{3} t}$

Let's Generalize

The derivative of the first derivative using normal derivative rules

Divided by dx/dt again because of the chain rule

Example

Find $\frac{d^{2} y}{d x^{2}}$ as a function of t if $x=t-t^{2}$ and $y=t-t^{3}$.

Example (cont.):
Find $\frac{d^{2} y}{d x^{2}}$ as a function of t if $x=t-t^{2}$ and $y=t-t^{3}$.

1. Find the first derivative $(d y / d x)$.

$$
y^{\prime}=\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{1-3 t^{2}}{1-2 t}
$$

2. Find the derivative of $d y / d x$ with respect to t.

$$
\frac{d y^{\prime}}{d t}=\frac{d}{d t}\left(\frac{1-3 t^{2}}{1-2 t}\right)=\frac{(1-2 t)(-6 t)-\left(1-3 t^{2}\right)(-2)}{(1-2 t)^{2}}
$$

$$
=\frac{2-6 t+6 t^{2}}{(1-2 t)^{2}}
$$

3. Divide by $d x / d t$.

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d y^{\prime}}{d t}}{\frac{\mathrm{dx}}{\mathrm{dt}}}=\frac{\frac{2-\mathrm{o} t+\mathrm{O} t}{(1-2 t)^{2}}}{1-2 t}
$$

$$
=\frac{2-6 t+6 t^{2}}{(1-2 t)^{3}}
$$

Find the slope and concavity at $(2,3)$

$$
\left\{\begin{array}{l}
x=\sqrt{t} \\
y=\frac{1}{4} t^{2}-1
\end{array}\right.
$$

Recall The Formula for Arc Length:

$$
\begin{gathered}
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \\
L=\int_{a}^{b} \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x=\int_{a}^{b} \sqrt{1+\left[\frac{d y / d t}{d x / d t}\right]^{2}} d x
\end{gathered}
$$

$$
\begin{aligned}
& =\int_{a}^{b} \sqrt{1+\left[\frac{d y / d t}{d x / d t}\right]^{2}} d x=\int_{a}^{b} \sqrt{\frac{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}{\left(\frac{d x}{d t}\right)^{2}}} d x \\
& =\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \frac{d t}{d x} d x
\end{aligned}
$$

Arc Length of a Parametric Equation

$$
L=\int_{t_{0}}^{t_{1}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

$$
\text { Find the length of }\left\{\begin{array}{l}
x=\cos ^{3} t \\
y=\sin ^{3} t
\end{array}, 0 \leq t \leq 2 \pi\right.
$$

Graph it!
(t from 0 to 2π)

Can't take the derivative at a cusp.
But the curve is symmetrical, so find the length of one part and multiply by 4 .

Practice:

- P. 657 \#5-I3 odd, 47-5I odd, 88-90

