Exam Review

1. Convert polar $\left(\sqrt{3}, \frac{\pi}{6}\right)$ to rectangular

Answer: $\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$
2. Find area inside one petal of $r=3 \cos (3 \theta)$

Answer: 2.356
3.

Area inside $r=3 \sin \theta$ but outside $r=2-\sin \theta$
Answer: 5.196
4. $\vec{v}=\cos (2 t) \vec{\imath}-2 \sin t \vec{\jmath}$

When $t=0$, the particle is at $\langle 3,-2\rangle$.
Find the position vector.
Answer: $\vec{r}=\left(\frac{1}{2} \sin (2 t)+3\right) \vec{\imath}+(2 \cos t-4) \vec{\jmath}$

5. Given $x=\sqrt{t}$ and $y=\frac{1}{4}\left(t^{2}-4\right)$

A. Find the equation of the tangent line when $t=4$
A. $y-3=8(x-2)$
B. Find $\frac{d^{2} y}{d x^{2}}$
B. $3 t$
C. What is the concavity at $\mathrm{t}=4$?
D. Find the arc length of the curve $1<\mathrm{t}<5$
C. Concave up
D. 6.1876

6. Given $y=\sqrt{x}$, find the arc length $0<x<3$

Answer: 3.6114
7. Find equation of tangent line to $r=$ $\cos (3 \theta)$ at $\theta=\pi / 6$
Answer: $y=\frac{\sqrt{3}}{3} x$
8. Use Euler's method to approximate $y(0.2)$ of $y^{\prime}=y$ with $y(0)=1$ using 2 steps.
Answer: 1.210
9. Solve $e^{3 y} \frac{d y}{d x}=x^{2}$

Answer: $y=\frac{1}{3} \ln \left(x^{3}+D\right)$

10. What is the carrying capacity and when

 will the population be increasing the fastest?$\begin{array}{ll}\text { A. } \frac{d P}{d t}=.36 P\left(1-\frac{P}{26}\right) & \text { B. } \frac{d P}{d t}=\frac{2}{2500} P(50-P)\end{array}$

Answers: A. Carrying capacity = 26, increasing the fastest when population is 13
-B. Carrying capacity $=50$, increasing the fastest when population is 25
11. Use the shell method to find the volume of the region bound by $y=-x^{2}+6 x-5$ and the x-axis.

Answer: $\int_{1}^{5} 2 \pi x\left(-x^{2}+6 x-5\right) d x=64 \pi=201.062$

12. The number of cells are growing exponentially. If there are initially 500 cells and they double in 25 minutes, how many cells are there in 45 minutes?

Answer: $k=\ln 2 / 25,1741$ cells

