MULTIPLE-CHOICE QUESTIONS

A calculator may not be used on the following questions.

- 1. A particle moves in the *xy*-plane such that its position for time $t \ge 0$ is given by $x(t) = 3t^2 19t$ and $y(t) = e^{2t-7}$. What is the slope of the tangent to the path of the particle when t = 4?
 - (A) $-\frac{e}{28}$
 - (B) $-\frac{28}{e}$
 - (C) $\frac{e}{5}$
 - (D) $\frac{2e}{5}$
- 2. The path of a particle in the xy-plane is given by the parametric equations $x(t) = \ln t$ and $y(t) = 5t^2 + 11$ for t > 0. An integral expression that represents the length of the path from t = 2 to t = 6 is
 - (A) $\int_{2}^{6} \sqrt{\frac{1}{t^{2}} + 100t^{2}} dt$
 - (B) $\int_{2}^{6} \sqrt{(\ln t)^{2} + (5t^{2} + 11)^{2}} dt$
 - (C) $\int_{2}^{6} \sqrt{1 + \frac{1}{t^2}} dt$
 - (D) $\int_{a}^{6} \sqrt{1+100t^2} \ dt$
- 3. The position vector of a particle moving in the *xy*-plane is $(t-\cos t, t^3-12t)$ for $t \in [0, 2\pi]$. For what value of *y* does the path of the particle have a horizontal tangent?
 - (A) -16
 - (B) $\frac{3\pi}{2}$
 - (C) 2
 - (D) 16
- 4. A plane curve has parametric equations $x(t) = t^2$ and $y(t) = t^4 + 3t^2$. An expression for the rate of change of the slope of the tangent to the path of the curve is
 - (A) $2t^2 + 3$
 - (B) 4t
 - (C) 2
 - (D) $t^2 + 3$

- 5. A particle moves in the xy-plane for t > 0 so that $x(t) = t^2 4t$ and $y(t) = \ln t$. At time t = 1, the particle is moving
 - (A) to the right and up.
 - (B) to the left and up.
 - (C) to the left and down.
 - (D) to the right and down.
- 6. The velocity vector of a particle moving in the xy-plane is $(\sqrt[3]{t}, 6e^{2t-2})$ for all real t. If the position of the particle at t = 1 is (0,
 - 5), then the position vector of the particle is

(A)
$$\left(t^{\frac{4}{3}} - 1, 3e^{2t-1} + 2\right)$$

(B)
$$\left(\frac{3}{4}t^{\frac{4}{3}}, 3e^{2t-2}\right)$$

(C)
$$\left(\frac{3}{4}t^{\frac{4}{3}}, 6e^{2t-2}-1\right)$$

(D)
$$\left(\frac{3}{4}t^{\frac{4}{3}} - \frac{3}{4}, 3e^{2t-2} + 2\right)$$

7. A particle moving in the *xy*-plane has position vector $\left(e^{2t}, \sqrt{t}\right)$ for $t \ge 0$. The acceleration vector of the particle is

(A)
$$\left(4e^{2t}, \frac{1}{4t^{\frac{3}{2}}}\right)$$

(B)
$$\left(e^{2t}, -\frac{1}{4t^{\frac{3}{2}}}\right)$$

(C)
$$\left(4e^{2t}, -\frac{1}{4t^{\frac{3}{2}}}\right)$$

(D)
$$\left(2e^{2t}, \frac{1}{2\sqrt{t}}\right)$$

A calculator may be used for the following questions.

8. A polar curve is given by $r = \frac{3}{2 - \cos \theta}$. The slope of the curve at

$$\theta = \frac{\pi}{2}$$
 is

- (A) 0
- (B) 0.5
- (C) 0.75
- (D) -0.75

- 9. The position vector of a particle moving in the *xy*-plane is $(t^2, \sin t)$. What is the distance traveled by the particle from t = 0
 - to $t = \pi$?
 - (A) 9.870
 - (B) 10.354
 - (C) 12.335
 - (D) 42.912
- 10. The area inside the polar curve $r = 3 + 2 \cos \theta$ is
 - (A) 9.425
 - (B) 18.850
 - (C) 28.274
 - (D) 34.558

11. A particle moves in the *xy*-plane so that its acceleration vector for time t > 0 is $\left(6t^2, \frac{20}{t}\right)$. If the velocity vector at t = 1 is (5,0), then

how fast is the particle moving when t = 3?

- (A) 36.069
- (B) 54.410
- (C) 58.299
- (D) 61.088

A calculator may not be used on the following questions.

12. A particle moves in the *xy*-plane so that its velocity for time $t \ge 0$ is given by the parametric equations $x'(t) = e^{2t}$ and $y'(t) = \sqrt{3t+1}$. An expression for the distance traveled by the particle on the interval $t \in [1,5]$ is

(A)
$$\int_{1}^{5} (e^{4t} + 3t + 1) dt$$

(B)
$$\int_{1}^{5} \left(e^{2t} + \sqrt{3t+1}\right)^{2} dt$$

(C)
$$\int_{1}^{5} \sqrt{e^{4t} + 3t + 1} dt$$

(D)
$$\int_{1}^{5} \left(\frac{1}{2} e^{2t} + \frac{2}{9} (3t+1)^{\frac{3}{2}} \right) dt$$

- 13. The area enclosed inside the polar curve $r^2 = 10\cos(2\theta)$ is
 - (A) 10
 - (B) 5π
 - (C) 20
 - (D) 10π

14. A particle moves in the *xy*-plane so that its velocity vector for time $0 \le t \le 10$ is $(\sqrt{100-10t},2t)$. Which one of the following statements

is true about the particle when t = 1?

- (A) The particle is slowing down.
- (B) The particle is speeding up.
- (C) The particle is at rest.
- (D) The speed of the particle is $\sqrt{90} + 2$.
- 15. A particle moves in the *xy*-plane for values of time t in the interval $1.25 \le t \le 3.75$ according to the parametric equations $x(t) = \cos(\pi t)$ and $y(t) = t^3 24t^2 + 45t$. For what value(s) of t in this interval is the line tangent to the path of the particle vertical? (A) 3 only
 - (B) 2 and 3 only
 - (C) 1.5, 2.5, and 3.5 only
 - (D) 1.5, 2.5, 3, and 3.5 only

FREE-RESPONSE QUESTION

A calculator may be used on this question.

1. A particle moving in the *xy*-plane has acceleration vector $\left(\sqrt{t}, \frac{1}{1+t^2}\right)$

for all $t \ge 0$. The particle is at rest at time t = 0.

- (a) Give the velocity vector of the particle at time t = 0.
- (b) Give the velocity vector of the particle at time t = 3.
- (c) How fast is the particle moving at time t = 3?
- (d) What is the total distance traveled by the particle in the time interval $0 \le t \le 3$?