MULTIPLE-CHOICE QUESTIONS

A calculator may not be used for the following questions.

Which of the following series is absolutely convergent?

(A)
$$\sum_{k=0}^{\infty} (-1)^k \frac{k+3}{k+\sqrt{k}}$$

CONVOY

(8)
$$\sum_{k=0}^{\infty} (-1)^k \frac{3}{\sqrt{k}}$$

(C)
$$\sum_{k=0}^{\infty} (-1)^{k+1} \frac{\sqrt{k}}{k+3}$$

(D) $\sum_{k=0}^{\infty} (-1)^{k+1} \frac{3}{k\sqrt{k}} \xrightarrow{2^{n}} \frac{3}{\sqrt{3}}$

- The power series $\sum_{k=1}^{m} \frac{x^k}{k}$ converges for which values of x?
- (A) -1 < x < 1

to

(D) x is any real number

Which of the following series is the power series expansion for $f(x) = x(\cos x - 1)?$

(A)
$$x - \frac{x^3}{2} + \frac{x^5}{24} - \cdots$$

(B)
$$-x^3 + x^5 - x^7 + \cdots$$

(C) $\frac{x^3}{2} - \frac{x^5}{24} + \frac{x^7}{720} + \cdots$
(D) $-\frac{x^3}{2} + \frac{x^5}{24} - \frac{x^7}{720} + \cdots$

$$\cos x - 1 = -\frac{x^3}{2!} + \frac{x!}{4!} - \frac{x^4}{6!} + \dots$$

What are all values of a for which the series $\sum_{k=0}^{\infty} \left(\frac{5}{9-a}\right)^k$ converges?

(B) 4 < a < 14

(C) a < 9 (D) a < 4 or a > 14

5 < q-a or -5 x ·9-a -4 < -a or -5 x ·9-a 2 | UT

© 2017 Cengage Learning, All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license with a certain product or service or otherwise on a password-protected website for classroom use.

check end pts

M8 (二)大 0~ M 1 DV

5. The Maclaurin series for $f(x) = \frac{1}{1 \pm x^2}$ is $\sum_{k=0}^{\infty} (-1)^k x^{2k}$. What is the

Maclaurin series for $g(x) = \tan^{-1} x$?) +x2= > E(-1) x 24

(A) $C + \sum_{n=0}^{\infty} (-1)^k (2k) x^{2k-1}$

(B)
$$C + \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$$

(C) $C + \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^{2k+1}}{2k}$

= E(-1) x 2 k+1

(D)
$$C + \sum_{k=0}^{\infty} (-1)^{k-1} \frac{x^2}{2}$$

(D)
$$C + \sum_{k=0}^{\infty} (-1)^{k-1} \frac{x^{2k-1}}{2k}$$

6. The Maclaurin series $\sum_{k=0}^{\infty} (-9)^k \frac{x^{4k}}{(2k)!}$ represents which function

(A)
$$\cos(3x^2)$$

(B) $\sin(3x^2)$

(A)
$$\cos(3x^2)$$

(B) $\sin(3x^2)$
(C) $\cos(9x^4)$

$$C_{os}(3x^2) = \sum_{k=0}^{\infty} \frac{(-1)^k (3x^2)^{2k}}{(2k)!}$$

N (-1)* 32KX

7. If the first five terms of the Taylor expansion for f(x) about x = 0 are $3-7x+\frac{5}{2}x^2+\frac{3}{4}x^3-6x^4$, then f'''(0) =

(A)
$$\frac{1}{8}$$

$$\frac{3}{4} = \frac{f''(0)}{3!}$$
 $\frac{3(3\cdot 2\cdot 1)}{4} = f'''(0)$

- 8. Which of the following series diverge?
- I. $\sum_{k=0}^{\infty} \frac{k^{2}+1}{5k^{2}+7}$
- II. \(\sum_{k2}^{\infty} (-1)^k \frac{1}{\lin(k)} \) alt scrits Con
- \searrow III. $\sum_{k=0}^{\infty} (-1)^k \left(\frac{4}{3}\right)^k$ Success >1
- (C) I and II only
 (D) I and III only

© 2017 Cengage Learning. All Rights Reserved. May not be copwith a certain product or service

I M Ky8

K32+1 = lim 5k2+7 1 = 5 x0000 5k2+7 K30 K34+1 K30 K2+K2

the same LCT

A calculator may be used for the following questions

The sixth degree term of the Taylor series expansion for $f(x) = e^{-\frac{1}{2}x^2}$ about x = 0 has coefficient

10. Let $T_n(x)$ represent the Taylor Polynomial of degree n about x = 0for $f(x) = e^{-x}$. If $T_n(2)$ is used to approximate the value of $f(2) = e^{-2}$, then which of the following expressions is NOT less than

$$\frac{2^{2}}{7!}$$

$$\frac{1}{7!}$$

$$\frac{1}{$$

*11. For function f(x), f(0) = 3, f'(0) = 2, f''(0) = 5, and f'''(0) = 4. Using the Taylor series expansion for f(x) about x = 0, the second degree estimate for f'(0.1) is A) 2.500

P_a =
$$3 + 3x + \frac{5x^2}{2!} + \frac{4x}{3!}$$

$$P' = 2 + 5x + 3x^2$$
sed for the following questions.
$$P'(i)$$

(B) 2.520 (C) 3.120 (D) 3.225

A calculator may not be used for the following questions.

12. The Maclaurin series $\sum_{k=0}^{\infty} (-5)^k \frac{X^{3k+2}}{k!}$ represents which expression

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license with a certain product or service or otherwise on a password-protected website for classroom use.

13. If $f(x) = \sin(x^2)$, the first three terms of the Taylor series expansion about x = 0 for f'(x) are $f(x) = x^2 - \frac{x^6 + \frac{x}{2}}{3!} + \frac{x}{5!}$ (B) $1 - \frac{1}{2}x^4 + \frac{1}{2}x^8$ (B) $1 - \frac{1}{2}x^4 + \frac{1}{16}x^8$ 31 + XMFINITE SERIES * 225

(A)
$$2x - x^3 + \frac{1}{2}x^5$$

(B) $1 - \frac{1}{2}x^4 + \frac{1}{16}x^6$
(C) $2x - x^3 + \frac{1}{12}x^9$
(D) $x^2 - \frac{1}{6}x^6 + \frac{1}{120}x^{10}$
 $f(x) = x^3 - \frac{x^6}{4} + \frac{x^{10}}{4}$
 $f(x) = 2x - x^5 + \frac{x^{10}}{4}$

14. Which of the following series is conditionally convergent?

(a)
$$\sum_{k=1}^{\infty} (-1)^k \frac{k^2+1}{k+4}$$
 D | V $\frac{1}{2} + \frac{1}{2} +$

15. The radius of convergence of the power series $\sum_{k=0}^{\infty} \frac{X^{2k}}{k \cdot 4^k}$ is

FREE-RESPONSE QUESTION

A calculator may be used for this question.

expansion for f(x) about x = 0 is given by $T(x) = \sum_{k=0}^{\infty} (-1)^k \frac{(k+1)x^{3k}}{k!}$ Let f(x) be a function that is differentiable for all x. The Taylor -. The

first four nonzero terms of T(x) are given by $T_4(x) = 1 - 2x^3 + \frac{3x^6}{2!} - \frac{4x^9}{3!}$

(a) Show that T(x) converges for all x. (b) Let W(x) be the Taylor expansion for $x^2f'(x)$ about x = 0. Find the general term for W(x) and find $W_{\pi}(x)$.

(c) $f(0.5) \approx T_4(0.5)$ and $f(1) \approx T_4(1)$. Find the values of $T_4(0.5)$ and $T_4(1)$.

(d) Which value is smaller, $|f(0.5) - T_4(0.5)|$ or $|f(1) - T_4(1)|$? Give a reason for your answer.

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

(15)
$$L:=$$
 $\left|\frac{x^{2(k+1)}}{x^{2(k+1)}}\right| \frac{x^{2(k+1)}}{x^{2k}} = \frac{x^{2}}{4} \left|\frac{x^{2}}{4}\right| \frac{x^{2}}{4} \left|\frac{x^{2}}{4}\right| \frac{x^{2}}{4} \left|\frac{x^{2}}{4}\right| = \frac{x$

FREE-RESPONSE-QUESTION

	Solution - 2	Possible points
(a)	Using the Ratio Test for absolute convergence, $\lim_{k \to \infty} \frac{\left \frac{(k+2)x^{3(k+1)}}{(k+1)!} \right }{\frac{(k+1)x^{3k}}{k!}} < 1 \Rightarrow$	2: {1: correct use of Ratio Test for Absolute Convergence 1: answer
	$\left \lim_{k \to \infty} \left \frac{(k+2)x^{3k+3}}{(k+1)!} \cdot \frac{k!}{(k+1)x^{3k}} \right < 1 \Rightarrow$	
	$\lim_{k \to \infty} \left \frac{k+2}{k+1} \cdot \frac{x^3}{k+1} \right < 1 \Rightarrow 1 \cdot 0 < 1 \text{ which is true for all } x.$	4
	Therefore $T(x)$ converges for all real numbers.	
(b)	$f'(x) = -3 \cdot 2x^2 + \frac{6 \cdot 3x^5}{2!} - \frac{9 \cdot 4x^8}{3!} + \dots =$	1: expanded $f'(x)$ 1: general term of $f'(x)$
	$\sum_{k=1}^{\infty} (-1)^k \frac{3k(k+1)x^{3k-1}}{k!}$. Therefore $W(x) = x^2 f'(x) = \sum_{k=1}^{\infty} (-1)^k \frac{3k(k+1)x^{3k+1}}{k!}$.	1: general term of $W(x)$ 1: $W_3(x)$
	$\sum_{k=1}^{\infty} (-1)^k \frac{3k(k+1)x^{3k+1}}{k!} \text{ and } W_3(x) = -6x^4 + 9x^7 - 6x^{10}.$	
(c)	Using direct substitution or a graphing calculator evaluation, $T_4(0.5) = 0.772$ and $T_4(1) = -0.167$.	1: both answers correct
(d)	Because $T(x)$ is an alternating series, each difference	2: $\begin{cases} 1: \text{ answer} \\ 1: \text{ reason} \end{cases}$
	above is smaller than the fifth term of the expansion,	1: reason
	$\frac{5x^{12}}{4!}$, and $\frac{5(0.5)^{12}}{4!} < \frac{5(1)^{12}}{4!}$ (0.00005 < 0.20833).	ļ
	Therefore, $ f(0.5) - T_4(0.5) $ is smaller. Alternatively,	
	$ f(0.5) - T_4(0.5) $ is smaller because 0.5 is closer than 1	
	to the center $x = 0$ of the interval of convergence. Therefore the series converges to $f(x)$ more quickly.	,

- (a), (b) (Calculus for AP 1st ed. pages 595–601; EU 4.2; LO 4.2; EK 4.2C2,4.2B5; MPAC 2,3)
- (c), (d) (Calculus for AP 1st ed. pages 584–591; EU 4.2; LO 4.2A,4.2B; EK 4.2A2,4.2B4; MPAC 2,3)