Day 2 Review Applications of Derivatives

♦ CHAPTER 2

8. In right triangle $\triangle ABC$, point A is moving along a leg of the right triangle toward point C at a rate of $\frac{1}{2}$ cm/sec and point B is moving toward point C at a rate of $\frac{1}{3}$ cm/sec along a line containing the other leg of the right triangle, as illustrated in the triangle shown below. What is the rate of change in the area of $\triangle ABC$, with respect to time, at the instant when AC = 15 cm and BC = 20 cm?

- (A) -0.0833 cm²/sec
- (B) $-0.4167 \text{ cm}^2/\text{sec}$
- (C) $-0.8333 \text{ cm}^2/\text{sec}$
- (D) $-7.5 \text{ cm}^2/\text{sec}$

6 ♦ CHAPTER 3

MULTIPLE-CHOICE QUESTIONS

A calculator may not be used on the following questions.

- 1. Let M represent the absolute maximum of f(x) in an interval. Let R represent a root of f(x) in the given interval. Let m represent the absolute minimum of f(x) in the interval. If $f(x) = x^3 - 3x^2$, then which of the following is true over the closed interval $-3 \le x \le 1$?
 - (A) M and R occur at a critical point and m occurs at an endpoint.
 - (B) M and m occur at critical points.
 - (C) M, m, and R occur at endpoints of the given interval.
 - (D) M occurs at an endpoint, whereas m and R occur at a critical point.
- 2. What value of c in the open interval (0, 4) satisfies the Mean Value Theorem for $f(x) = \sqrt{3x+4}$?
 - (A) 0
 - (B) $\frac{3}{5}$
 - (C) $\frac{5}{3}$
 - (D) 2

function f(x) increasing?

- (A) $\left(-\infty,-1\right)\cup\left(1,\infty\right)$
- (B) $(-\infty,0)\cup(1,\infty)$
- (C) $(-\infty, -1) \cup (0, \infty)$
- (D) $(1,\infty)$
- 4. The points of inflection for f(x) are at $x = p_1$ and $x = p_2$. Which of the following is (are) true?
 - I. The points of inflection for f(x-a) are at $x = p_1 + a$ and $x = p_2 + a$.
 - II. The points of inflection for bf(x) are at $x = b p_1$ and $x = b p_2$.
 - III. The points of inflection for f(cx) are at $x = \frac{p_1}{c}$ and $x = \frac{p_2}{c}$.
 - (A) I only
 - (B) II only
 - (C) I and II only
 - (D) I and III only

APPLICATIONS OF DERIVATIVES * 117

$$5. \quad \lim_{x \to 0} \frac{\sin 4x}{x^2 + 8x} =$$

- (A) 0
- (B) $\frac{1}{2}$
- (C) 1
- (D) ∞
- 6. The graph of f'(x) is given below for $x \in [-3,3]$. On which interval(s) is the function f(x) both increasing and concave up?

- (A) (-2,2)
- (B) $(-2,0) \cup (0,2)$
- (C) (-3,-2)
- (D) $(-2,-1)\cup(0,1)$

7. A farmer has 100 yards of fencing to form two identical rectangular pens and a third pen that is twice as long as the other two pens, as shown in the diagram below. All three pens have the same width, x. Which value of y produces the maximum total fenced area?

- (A) $\frac{25}{2}$
- (B) 10
- (D) $\frac{25}{3}$

118 ❖ CHAPTER 3

- 8. For the function $f(x) = 12x^5 5x^4$, how many of the inflection points of the function are also extrema?
 - (A) 3
 - (B) 2
 - (C) 1
 - (D) None
- 9. The position of an object moving along a straight line for $t \ge 0$ is given by $s_1(t) = t^3 + 2$, and the position of a second object moving along the same line is given by $s_2(t) = t^2$. If both objects begin at t = 0, at what time is the distance between the objects a minimum? (A) 2

 - (B) $\frac{50}{27}$

 - (D) 0

10. Given the following conditions for f(x), which graph best illustrates f(x)?

f(x): The domain of the function is the real numbers, but $x \neq 1$;

$$\lim_{x \to -\infty} f(x) = -1; \quad \lim_{x \to 1^{+}} f(x) = \infty; \quad \lim_{x \to 1^{+}} f(x) = -\infty.$$

f'(x) > 0 for all x where $x \ne 1$, and f'(x) does not exist at x = 1.

f''(x) > 0 for x < 1, f''(x) < 0 for x > 1, and f''(x) does not exist at x = 1.

A calculator may be used for the following question.

- 11. Let f(x) be a function such that $f'(x) = \ln x \cdot \cos x + \frac{\sin x}{x}$. In the interval 0 < x < 3, the graph of f(x) has a point of inflection nearest
 - $X = (\Delta) \cap \mathcal{C}$
 - (A) 0.352 (B) 1.101
 - (C) 2.128
 - (D) 2.259

A calculator may not be used on the following questions.

Questions 12 and 13 refer to the following information:

For time $0 \le t \le 10$, a particle moves along the x-axis with position given by $x(t) = t^3 - 7t^2 + 8t + 5$.

- 12. During what time intervals is the speed of the particle increasing?
 - (A) $4 < t \le 10$ only
 - (B) $0 \le t < \frac{2}{3}$ and $\frac{7}{3} < t < 4$
 - (C) $0 \le t < \frac{2}{3}$ and $4 < t \le 10$
 - (D) $\frac{2}{3} < t < \frac{7}{3}$ and $4 < t \le 10$
- 13. What is the position of the particle when it is farthest to the left?
 - (A) -14
 - (B) -11
 - (C) $-\frac{47}{27}$
 - (D) $\frac{203}{27}$

- 14. Based on the graph of g''(x) pictured above, how many points of inflection exist for the twice differentiable function g(x) on the interval -4 < x < 8?
 - (A) 4
 - (B) 3
 - (C) 2
 - (D) 1

- 15. A rectangle is drawn in the first quadrant so that it has two adjacent sides on the coordinate axes and one vertex on the curve $y = -\ln(x)$. Find the x coordinate of the vertex for which the area of the rectangle is a maximum.
 - (A) $\frac{1}{2}$
 - (B) $-\ln\left(\frac{1}{2}\right)$
 - (C) $\frac{1}{e}$
 - (D) e

FREE-RESPONSE QUESTION

This question does not require the use of a calculator.

- 1. The function f(x) is defined as $f(x) = -2(x+2)(x-1)^2$ on the open interval (-3, 3) as illustrated in the graph shown.
 - (a) Determine the coordinates of the relative extrema of f(x) in the open interval (-3, 3).
 - (b) Let g(x) be defined as g(x) = |f(x)| in the open interval (-3, 3). Determine the coordinate(s) of the relative maxima of g(x) in the open interval. Explain your reasoning.
 - (c) For what values of x is g'(x) not defined? Explain your reasoning.
 - (d) Find all values of x for which g(x) is concave down. Explain your reasoning.

98 ❖ Chapter 2

- 15. When the height of a cylinder is 12 cm and the radius is 4 cm, the circumference of the cylinder is increasing at a rate of $\frac{\pi}{4}$ cm/min, and the height of the cylinder is increasing four times faster than the radius. How fast is the volume of the cylinder changing?
 - (A) $\frac{\pi}{2}$ cm³/min
 - (B) $4\pi \text{ cm}^3/\text{min}$
 - (C) 12π cm³/min
 - (D) 20π cm³/min

FREE-RESPONSE QUESTION

A calculator may be used for this question.

- 1. An isosceles triangle is inscribed in a semicircle, as shown in the diagram, and it continues to be inscribed as the semicircle changes size. The area of the semicircle is increasing at the rate of 1 cm²/sec when the radius of the semicircle is 3 cm.
 - (a) How fast is the radius of the semicircle increasing when the radius is 3 cm? Include units in your answer.
 - (b) How fast is the perimeter of the semicircle increasing when the radius is 3 cm? Include units in your answer.
 - (c) How fast is the area of the isosceles triangle increasing when the radius is 3 cm? Include units in your answer.
 - (d) How fast is the shaded region increasing when the radius is 3 cm? Include units in your answer.