MULTIPLE-CHOICE QUESTIONS

A calculator may not be used for the following questions.

For Questions 1 and 2, region R is bounded by $f(y) = y^2 - 3$ and g(y) = 3y + 1.

1. Which of the following expressions gives the area of region R?

(A)
$$\int_{-2}^{13} (3y+1) - (y^2-3) dy$$

(B)
$$\int_{-2}^{13} (y^2 - 3) - (3y + 1) dy$$

(C)
$$\int_{-1}^{4} (3y+1) - (y^2-3) dy$$

(D)
$$\int_{-1}^{4} (y^2 - 3) - (3y + 1) dy$$

2. Which of the following expressions gives the volume when region R is rotated about the line x = 4?

(A)
$$\pi \int_{-2}^{13} (7 - y^2)^2 - (3 - 3y)^2 dy$$

(B)
$$\pi \int_{-1}^{4} (1-y^2)^2 - (5-3y)^2 dy$$

(C)
$$\pi \int_{-1}^{4} (7-y^2)^2 - (3-3y)^2 dy$$

(D)
$$\pi \int_{2}^{13} (3y+1)^{2} - (y^{2}-3)^{2} dy$$

For problems 3 and 4, region Q is bounded by $y = \sin 2x$, y = 0,

$$x = \frac{\pi}{2}$$
 and $x = \pi$.

- 3. What is the area of region?
 - (A) 0
 - (B) $\frac{1}{2}$
 - (C) $\frac{\pi}{2}$
 - (D) 1

4. Which of the following expressions gives the volume of a solid whose base in the *xy*-plane is region *Q* and whose cross sections, perpendicular to the *x*-axis, are squares with a side in the *xy*-plane?

(A)
$$\pi \int_{\frac{\pi}{2}}^{\pi} (1-\cos^2 2x) dx$$

(B)
$$\int_{\frac{\pi}{2}}^{\pi} \left(-\sin 2x\right)^2 dx$$

(C)
$$\pi \int_{\frac{\pi}{2}}^{\pi} (1 - \cos 2x) dx$$

(D)
$$\pi \int_{\frac{\pi}{2}}^{\pi} \left(-\sin 2x\right)^2 dx$$

For Question 5, region W is bounded by $f(x) = 3 + \sqrt{4 - x^2}$,

$$g(x) = \cos\left(\frac{\pi}{4}x\right)$$
, $x = 0$, and $x = 2$.

5. What is the area of the region W?

(B)
$$6 + \pi - \frac{4}{\pi}$$

(C)
$$6 + \pi + \frac{4}{\pi}$$

(D)
$$6 + 2\pi - \frac{4}{\pi}$$

6. In the closed interval $0 \le x \le 2$, if $h(x) = k \cos\left(\frac{\pi}{4}x\right)$, for what value of k does the region bounded by f(x) and the line y = 3 have the same area as that bounded by h(x) and the x-axis?

(A)
$$\frac{1}{2}$$

(B)
$$\frac{\pi}{4}$$

(C)
$$\frac{\pi^2}{4}$$

(D)
$$\frac{\pi^2}{2}$$

A calculator may be used on the following questions.

- 7. Air is being pumped into a spherical balloon at the rate of $R(t) = t + \cos(t+1) \, \mathrm{cm}^3 / \mathrm{min}$, but there is a small hole in the balloon and at the same time air is leaking out at the rate of $L(t) = 0.25 \, \mathrm{tan}^{-1}(t) \, \mathrm{cm}^3 / \mathrm{min}$. Which of the following is true for $0 \le t \le 10$, where t is measured in minutes?
 - (A) $\int_0^{10} R(t) L(t) dt$ represents the volume of the balloon after the first 10 minutes.
 - (B) $\frac{1}{10} \int_0^{10} R(t) L(t) dt$ represents the increase in volume each minute during the first 10 minutes.
 - (C) $\int_0^{10} R(t) L(t) dt$ represents the increase in volume during the first 10 minutes.
 - (D) R(0) L(0) = 1

8. The revenue and expenditures for a small company are analyzed and predicted for the next 5 years. The current annual revenue is \$125,000 and growing at an annual rate of 30%, while the expenditures are modeled with a sinusoidal function. If

$$R(t) = 125,000(1.3)^t$$
 and $E(t) = 25,000e^{\frac{t}{3}} \left(\sin\left(\frac{t}{2}\right) + \cos\left(\frac{t}{3}\right) \right)$,

to the nearest dollar, what is the average annual profit for the company when the expenditures reach a maximum value on the interval $0 \le t \le 5$?

- (A) \$434,691
- (B) \$340,827
- (C) \$127,282
- (D) \$106,613
- 9. Region G is bounded by the curve $y = \ln x$, x = e, and the x-axis. Order from smallest to largest the volumes determined when G is rotated about the axes:

I.
$$y = 0$$
 II. $y = 1$ III. $y = e$

(B)
$$II < I < III$$

(C)
$$I < II < III$$

(D)
$$I < III < II$$

- 10. The base of a solid is bounded by $y = \tan^2 x$ and $y = 4 x^2$ in the xy-plane, as shown in the figure below. Each cross section perpendicular to the x-axis is a rectangle with one side in the x-y plane and whose height is 2. What is the volume of the solid?
 - (A) 3.121
 - (B) 4.454
 - (C) 6.243
 - (D) 12.486

A calculator is required for the following questions.

- 11. Find the combined area of the two regions bounded by the curves $f(x) = e^{x-1}$ and $g(x) = x^2 e^{1-x^3}$ as shown in the figure above.
 - (A) 0.073
 - (B) 0.203
 - (C) 0.276
 - (D) 0.931

Questions 12–14 refer to the following information:

The velocity of a particle moving along a line is given by

$$v(t) = e^t \sin(e^t)$$
 for the interval $0 \le t \le \frac{\pi}{2}$.

12. How far to the right of the starting point will the particle be at

$$t=\frac{\pi}{2}?$$

- (A) 0.442
- (B) 0.540
- (C) 1.145
- (D) 1.540
- 13. What is the distance that the particle has traveled on this time interval?
 - (A) 0.442
 - (B) 1.145
 - (C) 1.540
 - (D) 2.638
- 14. If the position of the particle at time t=0 is -1, then what is the position of the particle when it is farthest to the right on this time interval?
 - (A) 0.442
 - (B) 0.540
 - (C) 1.145
 - (D) 1.540

15. Which of the following expressions represents the volume of the solid generated when the region bounded by $y = x^2 - 2x + 3$ and $y = 1 + 3x - x^2$ is rotated about the line y = -2?

(A)
$$V = \pi \int_{\frac{1}{2}}^{2} [(1+3x-x^2)-(x^2-2x+3)] dx$$

(B)
$$V = \pi \int_{\frac{1}{2}}^{2} \left[(-1 + 3x - x^2)^2 - (x^2 - 2x + 1)^2 \right] dx$$

(C)
$$V = \pi \int_{\frac{1}{2}}^{2} \left[(3 + 3x - x^2)^2 - (x^2 - 2x + 5)^2 \right] dx$$

(D)
$$V = \pi \int_{\frac{1}{2}}^{2} \left[(1 + 3x - x^2) - (x^2 - 2x + 3) \right]^2 dx$$

FREE-RESPONSE QUESTION

A calculator may be used for this free-response question.

Let f be the function given by $f(x) = e^x + 1$ as shown in the sketch below, where the region R is bounded by the graph of f(x), the y-axis, and the horizontal line y = 4.

- (a) Find the area of the region R.
- (b) A vertical line x = h, where h > 0 is chosen so that the area of the region bounded by f(x), the y-axis, the horizontal line y = 4, and the line x = h is half the area of region R. What is the value of h?
- (c) Find the volume of the solid formed when region R is rotated about the line y = 4.
- (d) A horizontal line y = k, where k is greater than 4, is chosen so that the volume of the solid formed when region R is rotated about the line y = k is twice the volume of the solid found in part (c). Set up, but do *not* evaluate, an integral expression in terms of a single independent variable which represents the volume of this solid.

2. Which of the following integral expressions represents the area of the region bounded by the graphs of $y = \frac{9}{x^2 + x - 20}$, x = -3, x = 2, and the x-axis?

(A)
$$\left| \int_3^2 \left(\frac{1}{x-4} + \frac{1}{x+5} \right) dx \right|$$

(B)
$$\left| \int_{3}^{2} \left(\frac{1}{x-4} - \frac{1}{x+5} \right) dx \right|$$

(C)
$$\left| \int_{3}^{2} \left(\frac{5}{x-4} + \frac{4}{x+5} \right) dx \right|$$

(D)
$$\left| \int_{3}^{2} \left(\frac{1}{x+4} - \frac{1}{x-5} \right) dx \right|$$

5. What is the area of the region in the first quadrant between the x-axis, y-

axis,
$$y = \frac{1}{x^2}$$
, and $x = 1$.

- (A) 1 (B) 2
- (C) 0
- (D) ∞

7. What is the area of the region in the first quadrant between the x-axis, the graph

$$y = \frac{1}{x^2}$$
, and $x = 1$?

- (A) 1
- (B) 2
- (C) 0
- (D) ∞

- 9. The area of the region bounded by the graphs of $y = xe^x$, x = 0, $x = \ln 2$, and the x-axis is
 - (A) $2\ln(2)-1$
 - (B) $2\ln(2)$
 - (C) $2\ln(2)+1$
 - (D) $[\ln(2)]^2 1$
- 11. The area of the Quadrant I region under the function $f(x) = \frac{e^x}{1 + e^{2x}}$
 - is
 - (A) $\frac{\pi}{4}$
 - (B) 1
 - (C) $\frac{\pi}{2}$
 - (D) divergent
- 14. Let R be the region bounded by the graphs of the function
 - $f(x) = \frac{1}{\sqrt{x^2 1}}$, the x-axis, and the lines x = p and x = q, where
 - 1 . An expression for the volume of the solid generated byrevolving R about the x-axis is
 - (A) $\int_{p}^{q} \frac{1}{x^2 1} dx$
 - (B) $\frac{\pi}{2} \int_{p}^{q} \left[\frac{1}{x-1} + \frac{1}{x+1} \right] dx$
 - (C) $\pi \int_{p}^{q} \left[\frac{1}{x-1} \frac{1}{x+1} \right] dx$
 - $\frac{\pi}{2} \int_{p}^{q} \left[\frac{1}{x-1} \frac{1}{x+1} \right] dx$
- 15. The base of a certain solid is the region bounded by the coordinate axes, the line x = 16, and the graph of $y = x^{-\frac{1}{4}}$. For this solid, each cross section perpendicular to the x-axis is a square whose side is across the base. The volume of this solid is
 - (A) 8
 - (B) $\frac{32}{3}$
 - (C) 8π
 - (D) divergent