
Section 7.7 Indeterminate Forms



Review:   

We end up with an indeterminate form

Note why this is indeterminate
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We can evaluate it by factoring 

and canceling:
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We end up with another indeterminate form
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Divide numerator and denominator by x2 

(highest power in the denominatior)

2

3

02

03









Or use L’Hôpital’s Rule
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Remember that L’Hôpital’s Rule can be 

applied only to quotients leading to the 

indeterminate forms 

There are similar forms that you 

should recognize as “determinate.”
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The first two can be evaluated using 

L’Hôpital directly.

need to be rewritten as a 

fraction in order to use L’Hôpital.

0 00
1 0 0

0


  



have been identified as indeterminate. 

We will deal with the indeterminate powers tomorrow.
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approaching from the left, so sin π is positive
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If we find a common denominator and subtract, we get:
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Now it is in the form
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L’Hôpital’s rule applied once.
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Rewrite as a ratio!
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L’Hôpital again.
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Practice

p. 511 #7-39 every other odd, 

44, 46, 58, 60, 79

Even Answers: #44 is 0

#46 is 1,  #58 is -1/8,  and 

#60 is -∞



Section 7.7 Indeterminate 

Forms continued
Indeterminate Powers



Indeterminate Powers
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Example
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Direct Substitution

Take natural log of both 

sides

Move log inside the limit

Now use L’H.

Simplify

This is not the final 

answer.

Use log rule
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 p. 511 #47 – 56 all, 81, 82


