Section 7.7 Indeterminate Forms

Review: $x^{2}+6 x-16$

$$
=\frac{2^{2}+6 \cdot 2-16}{2-2}=\frac{0}{0}
$$

We end up with an indeterminate form
Note why this is indeterminate

$$
\frac{0}{0}=n \quad \Rightarrow 0 \cdot n=0 \quad n=?
$$

$$
\lim _{x \rightarrow 2} \frac{x^{2}+6 x-16}{x-2}
$$

We can evaluate it by factoring and canceling:

$$
\begin{gathered}
=\lim _{x \rightarrow 2} \frac{(x-2)(x+8)}{x-2} \\
=\lim _{x \rightarrow 2} x+8=2+8=10
\end{gathered}
$$

Review: $\lim _{x \rightarrow \infty} \frac{3 x^{2}-1}{2 x^{2}+1}=\frac{3(\infty)^{2}-1}{2(\infty)^{2}+1}=\frac{\infty}{\infty}$

We end up with another indeterminate form

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x^{2}-1}{2 x^{2}+1} \begin{array}{c}
\text { Divide numerator and denominator by } y^{2} \\
\text { (highest power in the denominatior) }
\end{array} \\
& =\lim _{x \rightarrow \infty} \frac{3-\left(1 / x^{2}\right)}{2+\left(1 / x^{2}\right)}=\frac{3-0}{2+0}=\frac{3}{2}
\end{aligned}
$$

Or use L'Hôpital's Rule

If we have an indeterminate form of type ${ }_{0}^{0}$ or ∞ / ∞,
then $\lim _{x \rightarrow \mathrm{a}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \mathrm{a}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
$\lim _{x \rightarrow 2} \frac{x^{2}+6 x-16}{x-2}=\lim _{x \rightarrow 2} \frac{2 x+6}{1}=\frac{2 \cdot 2+6}{1}=10$
$\lim _{x \rightarrow \infty} \frac{3 x^{2}-1}{2 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{6 x}{4 x}=\frac{6}{4}=\frac{3}{2}$

$$
\begin{aligned}
& \text { Try: } \lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\frac{0}{0} \\
& \lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\lim _{x \rightarrow 1} \frac{\frac{d}{d x}(\ln x)}{\frac{d}{d x}(x-1)}=\lim _{x \rightarrow 1} \frac{1 / x}{1}=\lim _{x \rightarrow 1} \frac{1}{x}=1
\end{aligned}
$$

$$
\text { Try: } \begin{aligned}
& \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}=\frac{\infty}{\infty} \\
& \lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}=\frac{\infty}{\infty} \\
& \lim _{x \rightarrow \infty} \frac{e^{x}}{2}=\frac{\infty}{2}=\infty
\end{aligned}
$$

Remember that L'Hôpital's Rule can be applied only to quotients leading to the indeterminate forms ${ }^{\infty}$

$$
\bar{\infty} \operatorname{or}_{0}
$$

There are similar forms that you should recognize as "determinate."

$$
\begin{array}{ccc}
\frac{\#}{\infty} \rightarrow 0 & \frac{\#}{0} \rightarrow \pm \infty & 0^{\infty} \rightarrow 0 \\
\frac{\infty}{\#} \rightarrow \pm \infty & \infty+\infty \rightarrow \infty & 0^{-\infty} \rightarrow \pm \infty \\
& -\infty-\infty \rightarrow-\infty &
\end{array}
$$

$\frac{0}{0} \quad \frac{\infty}{\infty} \quad \infty-\infty \quad 1 \begin{array}{llll}\infty & 0^{0} & \infty^{0} \\ \text { have been identified as indeterminate. }\end{array}$.

The first two can be evaluated using L'Hôpital directly.
$\infty-\infty$ and $0 \cdot \infty$ need to be rewritten as a fraction in order to use L'Hôpital.

We will deal with the indeterminate powers tomorrow.
$\lim x \ln x$
$x \rightarrow 0+$
$\lim (\sec x-\tan x)$
$x \rightarrow \frac{\pi}{2}-$

Try:

$\lim _{x \rightarrow \pi-}(x-\pi) \cot x=1 \quad \lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)=1 / 2$

$\lim (x-\pi) \cot x=0 \cdot-\infty$

$$
\frac{\cos \pi}{\sin \pi}=\frac{-1}{0}=-\infty \quad \text { because we are }
$$ approaching from the left, so $\sin \pi$ is positive

$$
=\lim _{x \rightarrow \pi-} \frac{x-\pi}{\tan x}=\frac{0}{0}
$$

$$
\stackrel{H}{=} \lim _{x \rightarrow \pi-\pi} \frac{1}{\sec ^{2} x}=\lim _{x \rightarrow \pi-} \cos ^{2} x=(-1)^{2}=1
$$

$$
\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)
$$

\longleftarrow This is indeterminate form

Rewrite as a ratio!

If we find a common denominator and subtract, we get:
$\lim _{x \rightarrow 1}\left(\frac{x-1-\ln x}{(x-1) \ln x}\right)$
$\lim _{x \rightarrow 1}\left(\frac{1-\frac{1}{x}}{\frac{x-1}{x}+\ln x}\right)$
$\lim _{x \rightarrow 1}\left(\frac{x-1}{x-1+x \ln x}\right) \longleftarrow$ Now it is in the form L'Hôpital's rule applied once.
$\lim _{x \rightarrow 1}\left(\frac{1}{1+1+\ln x}\right)$

Practice

$$
\begin{gathered}
\text { p. } 5 \text { I I \#7-39 every other odd, } \\
44,46,58,60,79
\end{gathered}
$$

Even Answers: \#44 is 0
\#46 is $I, \# 58$ is $-I / 8$, and $\# 60$ is $-\infty$

Section 7.7 Indeterminate Forms continued

Indeterminate Powers

Indeterminate Powers

$$
\lim _{x \rightarrow a}[f(x)]^{g(x)} 0^{0}
$$

Idea:

these three cases can be treated by taking the natural logarithm:

$$
y=[f(x)]^{g(x)} \rightarrow \ln y=g(x) \ln [f(x)]
$$

Example $\lim _{x \rightarrow 0+} x^{x}$

$$
\lim _{x \rightarrow 0^{+}} x^{x}=0^{0} \quad \text { Direct Substitution }
$$

$$
y=\lim _{x \rightarrow 0^{+}} x^{x} \quad \begin{aligned}
& \text { Take natural log of both } \\
& \text { sides }
\end{aligned}
$$

$$
\ln y=\ln \lim _{x \rightarrow 0^{+}} x^{x} \text { Move log inside the limit }
$$

$$
\ln y=\lim _{x \rightarrow 0^{+}} \ln x^{x} \quad \text { Use log rule }
$$

$$
\ln y=\lim _{x \rightarrow 0^{+}} x \ln x=0 \cdot(-\infty)
$$

$$
\begin{aligned}
\ln y & =\lim _{x \rightarrow 0^{+}}-x=0 \\
\ln y & =0 \quad \begin{array}{l}
\text { This is not the final } \\
\text { answer. }
\end{array} \\
e^{\ln y} & =e^{0} \\
y & =1 \\
y & =\lim _{x \rightarrow 0^{+}} x^{x}=1
\end{aligned}
$$

$$
\ln y=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}=\frac{-\infty}{\infty} \quad \text { Now use L'H. }
$$

$$
\ln y=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}=\quad \text { Simplify }
$$

Try: $\lim _{x \rightarrow 0+}(-\ln x)^{x}=1 \quad \lim _{x \rightarrow \infty}\left(x^{2}+e^{x}\right)^{5 / x}=e^{5}$
-p. 5II \#47-56 all, 8I, 82

