
Section 9.3 

Integral Test and p-series



Integrals are a sum of infinite rectangles 

under a curve, so they should be related to 

infinite series.

Integral Test

If f(x) is positive, continuous and 

decreasing for x ≥ 1 and an = f(n) , then

if converges, then  converges

if  diverges, then  diverges
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Example:             Converge or Diverge?

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Nth term test for Divergence?

Telescopic Series?

Geometric Series?

Is the function positive, continuous 

and decreasing for x ≥ 1?

Then try integration.
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Nth term test for Divergence?

Telescopic Series?

Geometric Series?

Is the function positive, continuous 

and decreasing for x ≥ 1?

Then try integration.



A series in the form             is called a p-series.
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When p = 1,          .

This series is called the harmonic series. 
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(In music, the wavelengths of overtones of a vibrating string form a harmonic series.)

We looked at p-integrals earlier this year.  What 

values of p caused the integral to converge?



In p-series,

If p > 1, the series converges.

If p ≤ 1, the series diverges.

This was proven by integration earlier.



Harmonic Series

Basically this implies that 
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Examples:  Converge or Diverge?
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p. 567 # 1 – 19 odd, 21 – 32 all


