Reminder: Multiple Choice \#1-8 are on AP Classroom. You will submit only the free response on paper. This is due Monday, October $21^{\text {st }}$.

Graph of f
The continuous function f is defined on the closed interval [$-5,5$]. The graph of f consists of a parabola and two line segments, as shown in the figure above. Let g be a function such that $g^{\prime}(x)=f(x)$
a) Fill in the missing entries in the table below to describe the behavior of f^{\prime} and $f^{\prime \prime}$. Indicate Positive, Negative, or 0 . Give reasons for your answers.

\mathbf{x}	$-\mathbf{5}<\boldsymbol{x}<-\mathbf{2}$	$-\mathbf{2}<\boldsymbol{x}<\mathbf{0}$	$\mathbf{0}<\boldsymbol{x}<\mathbf{3}$	$\mathbf{3}<\boldsymbol{x}<\mathbf{5}$
$\boldsymbol{f}(\boldsymbol{x})$	Positive	Positive	Positive	Positive
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$				
$\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$				

b) There is no value of x in the open interval $(-1,3)$ at which $f^{\prime}(x)=\frac{f(3)-f(-1)}{3-(-1)}$. Explain why this does not violate the Mean Value Theorem.
c) Find all values of \boldsymbol{x} in the open interval $(-5,5)$ at which the graph of \boldsymbol{g} has a point of inflection. Explain your reasoning.
d) At what value of \boldsymbol{x} does \boldsymbol{g} attain its absolute maximum on the closed interval $[-5,5]$? Give a reason for your answer.

