Reminder: Multiple Choice #1-8 are on AP Classroom. You will submit only the free response on paper. This is due Monday, October 21st.

The continuous function *f* is defined on the closed interval [-5,5]. The graph of *f* consists of a parabola and two line segments, as shown in the figure above. Let *g* be a function such that g'(x) = f(x)

a) Fill in the missing entries in the table below to describe the behavior of f' and f''. Indicate Positive, Negative, or 0. Give reasons for your answers.

X	-5 < x < -2	-2 < x < 0	0 < x < 3	3 < x < 5
f(x)	Positive	Positive	Positive	Positive
f'(x)				
$f^{\prime\prime}(x)$				

b) There is no value of x in the open interval (-1,3) at which $f'(x) = \frac{f(3)-f(-1)}{3-(-1)}$. Explain why this does not violate the Mean Value Theorem.

c) Find all values of x in the open interval (-5,5) at which the graph of g has a point of inflection. Explain your reasoning.

d) At what value of x does g attain its absolute maximum on the closed interval [-5,5]? Give a reason for your answer.