Area and Volume Problem Set

In guestions 1-11, find the area of the region whose boundaries are given.

The curve of $y = x^2$, y = 0, x = -1, and x = 2.

- (A) $\frac{11}{3}$ (B) $\frac{7}{3}$ (C) 3 (D) 5 (E) none of these

The parabola $y = x^2 - 3$ and the line y = 1.

- **(B)** 32 **(C)** $\frac{32}{3}$ **(D)** $\frac{16}{3}$
 - (E) none of these

The curve of $x = y^2 - 1$ and the y-axis.

- **(A)** $\frac{4}{3}$ **(B)** $\frac{2}{3}$ **(C)** $\frac{8}{3}$ **(D)** $\frac{1}{2}$

- (E) none of these

4. The parabola $y^2 = x$ and the line x + y = 2.

- (A) $\frac{5}{2}$ (B) $\frac{3}{2}$ (C) $\frac{11}{6}$ (D) $\frac{9}{2}$ (E) $\frac{29}{6}$

The curve of $y = \frac{4}{x^2 + 4}$, the x-axis, and the vertical lines x = -2 and x = 2.

- (B) $\frac{\pi}{2}$ (C) 2π (D) π
- (E) none of these

The parabolas $x = y^2 - 5y$ and $x = 3y - y^2$.

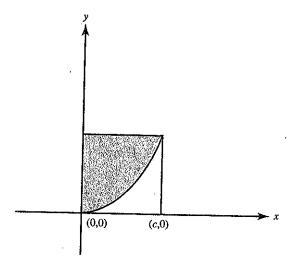
- (A) $\frac{32}{3}$ (B) $\frac{139}{6}$ (C) $\frac{64}{3}$ (D) $\frac{128}{3}$ (E) none of these

The curve of $y = \frac{2}{x}$ and x + y = 3.

- (A) $\frac{1}{2} 2 \ln 2$ (B) $\frac{3}{2}$ (C) $\frac{1}{2} \ln 4$

- **(D)** $\frac{5}{2}$ **(E)** $\frac{3}{2} \ln 4$

In the first quadrant, bounded below by the x-axis and above by the curves of $y = \sin x$ and $y = \cos x$.


- (A) $2 \sqrt{2}$
- **(B)** $2 + \sqrt{2}$ **(C)** 2
- (D)
- **(E)** $2\sqrt{2}$

- Bounded above by the curve $y = \sin x$ and below by $y = \cos x$ from $x = \frac{\pi}{4}$ to $x = \frac{5\pi}{4}$
- $2\sqrt{2}$ (B) $\frac{2}{\sqrt{2}}$ (C) $\frac{1}{2\sqrt{2}}$
- $2(\sqrt{2}-1)$
- **(E)** $2(\sqrt{2}+1)$
- The curve of $y = x^3 2x^2 3x$ and the x-axis. 11.

- (A) $\frac{28}{3}$ (B) $\frac{79}{6}$ (C) $\frac{45}{4}$ (D) $\frac{71}{6}$ (E) none of these
- The total area bounded by the cubic $x = y^3 y$ and the line x = 3y is equal to

- **(B)** $\frac{16}{3}$ **(C)** 8 **(D)** $\frac{32}{3}$

The figure below shows part of the curve of $y = x^3$ and a rectangle with two vertices at (0,0) and (c,0). What is the ratio of the area of the rectangle to the shaded part of it above the cubic?

- 3:4
- 5:4
- **(D)** 3:1

In questions 18-23, find the volume of the region whose boundaries are given	and is
rotated about the given line.	

18. y	$=x^2$	x=2	and y	y=0;	about	the 2	c-axis

19.
$$y = x^2$$
, $x = 2$, and $y = 0$; about the y-axis.

- (C) $\frac{32\pi}{5}$

20. The first quadrant region bounded by
$$y = x^2$$
, the y-axis, and $y = 4$; about the y-axis.

- (A) 8π

21.
$$y = x^2$$
 and $y = 4$; about the x-axis.

- **(B)** $\frac{512\pi}{15}$ **(C)** $\frac{256\pi}{5}$
- - $\frac{128\pi}{5}$ (E) none of these

22.
$$y = x^2$$
 and $y = 4$; about the line $y = 4$.

- (A) $\frac{256\pi}{15}$ (B) $\frac{256\pi}{5}$ (C) $\frac{512\pi}{5}$

23. An arch of $y = \sin x$ and the x-axis; about the x-axis.

- (A) $\frac{\pi}{2} \left(\pi \frac{1}{2} \right)$ (B) $\frac{\pi^2}{2}$ (C) $\frac{\pi^2}{4}$ (D) π^2

- **(E)**

26. The base of a solid is the region bounded by the parabola
$$x^2 = 8y$$
 and the line $y = 4i$ and each plane section perpendicular to the y-axis is an equilateral triangle. The volume of the solid is

- **(C)** $32\sqrt{3}$

- **(D)** 32
- **(E)** none of these

27. The base of a solid is the region bounded by
$$y = e^{-x}$$
, the x-axis, the y-axis, and the line $x = 1$. Each cross section perpendicular to the x-axis is a square. The volume of the solid is

- (A) $\frac{e^2}{2}$ (B) $e^2 1$ (C) $1 \frac{1}{e^2}$
- **(D)** $\frac{e^2-1}{2}$ **(E)** $\frac{1}{2}\left(1-\frac{1}{e^2}\right)$