THE CHAIN RULE

Section 2.4

Estimating derivatives of a function defined by a table of values

Example: Let D(t) be the U.S. National debt at time t. D(t) is measured in billions of dollars.

Estimate and interpret D'(1990)

t	D(t)
1980	930.2
1985	1945.9
1990	3233.3
1995	4974.0
2000	5674.2

D'(1990) can be calculated two ways.

1. "straddle the point"

Calculate the rate of change from 1985 to 1995.

t	D(t)
1980	930.2
1985	1945.9
1990	3233.3
1995	4974.0
2000	5674.2

D'(1990) can be calculated two ways.

2. Calculate the rate of change on both sides, then average the two rates.

	t	D(t)
1985 to 1990	1980	930.2
	1985	1945.9
1990 to 1995	1990	3233.3
	1995	4974.0
	2000	5674.2

D'(1990) = approx 303 billion dollars per yr. This is the rate the debt was increasing in 1990.

Problem: Find the derivative of $f(x) = (2x^2 - 4x + 1)^{60}$

Chain Rule:
$$\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$$

$$f(x) = (2x^2 - 4x + 1)^{60} \qquad f(x) = [g(x)]^{60}$$
$$g(x) = 2x^2 - 4x + 1$$

$$f'(x) = 60($$
)⁵⁹ ·

Example:
$$f(x) = \sqrt{x^2 + 1} = (x^2 + 1)^{1/2}$$

Outside

$$()^{1/2} f'(x) = \frac{1}{2} (f'(x) - \frac{1}{2} ($$

Example:
$$f(x) = \sin^2 x = [\sin x]^2$$

Outside

$$()^2 f'(x) = 2([])^1$$

You Try:

$$y = (3x - 4)^{10}$$
 $y = \sin(7 - 5x)$
 $y' = 10(3x - 4)^9 \cdot 3$ $y' = \cos(7 - 5x) \cdot -5$
 $y' = 30(3x - 4)^9$ $y' = -5\cos(7 - 5x)$

Chain Rule with other rules

 $y = (2x + 5)^5 \cdot (x^3 - x + 1)^4$

$$y = \left(\frac{x-2}{2x+1}\right)^9$$

Using Chain Rule Multiple Times $Ex. y = (1 + cos(2x))^2$ Ex. y = tan[5 - sin(2x)]

Ex.
$$y = \sqrt{\sec(x^3)}$$