Derivatives and Integration of
Series

Section 9.9 continued



Derivative of a Series
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Notice our derivative has one less term than the original series.
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Whatever 1s valid for a polynomaial 1s usually good for a series.
Use Power and Chain rules.
n 1s a constant, x 1s a variable.

Interval and radius of convergence are the same.

The endpoints may or may not be
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Integrals of Series
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Now let’s use derivatives and mtegrals to find series for

functions not easily written as ﬁ
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Express the function as a series
f (X)=In(1—Xx)



Express the function as a series

f (X) =tan X



Express the function as a series
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Series Manipulation Techniques



Substitute into a known Series
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Find a series for ( (X) = f{an _1(X4)



Expand and Cancel
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Same 1dea as the
Telescoping Test



Consider




What you cannot do
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We cannot square a series.

Doing so would require infinite foiling or methods
beyond the scope of this class.



