Derivatives and Integration of Series

Section 9.9 continued

Derivative of a Series

$\frac{d}{d x}\left(3+3 x+3 x^{2}+3 x^{3}\right)$

Notice our derivative has one less term than the original series.

$$
\begin{aligned}
& \frac{d}{d x}\left(3+3 x+3 x^{2}+3 x^{3}+\cdots 3 x^{n}+\cdots\right) \\
& \frac{d}{d x} \sum_{n=0}^{\infty} 3 x^{n}=\sum_{n=1}^{\infty} 3 n x^{n-1}
\end{aligned}
$$

Increased for lost of $1^{\text {st }}$ term whose derivative is zero

Whatever is valid for a polynomial is usually good for a series.
Use Power and Chain rules.
n is a constant, x is a variable.
Interval and radius of convergence are the same.

$$
\frac{d}{d x} \sum_{n=0}^{\infty} 4(2 x)^{n}
$$

The endpoints may or may not be included.

Integrals of Series

$$
\int 3+3 x+3 x^{2}+3 x^{3} d x
$$

$$
\int 3+3 x+3 x^{2}+3 x^{3}+\cdots+3 x^{n}+\cdots d x
$$

Find $\int \sum_{n=0}^{\infty} 5 x^{n} d x$

$$
\begin{aligned}
& \int \sum_{n=1}^{\infty}(-1)^{n} x^{2 n} \\
& \int \sum_{n=0}^{\infty}\left(x^{2}\right)^{n}
\end{aligned}
$$

Now let's use derivatives and integrals to find series for functions not easily written as $\frac{a}{1-r}$.

$$
f(x)=\frac{1}{(1-x)^{2}}
$$

Express the function as a series

$$
f(x)=\ln (1-x)
$$

Express the function as a series

$$
f(x)=\tan ^{-1} x
$$

Express the function as a series

$$
f(x)=\frac{x^{2}}{(1+x)^{2}}
$$

Series Manipulation Techniques

Substitute into a known Series

Yesterday we proved that $\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$
Find a series for $g(x)=\tan ^{-1}\left(x^{4}\right)$

Expand and Cancel

$$
\text { Consider } \quad \sum_{n=0}^{\infty} x^{2 n}+\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

Same idea as the Telescoping Test

$$
1-\sum_{n=0}^{\infty} x^{2 n}
$$
 $$
x
$$

What you cannot do

$$
\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right)^{2}=\left(a_{1}+a_{2}+a_{3}+\cdots\right)\left(a_{1}+a_{2}+a_{3}+\cdots\right)
$$

We cannot square a series.

Doing so would require infinite foiling or methods beyond the scope of this class.

