Section 2.2 Derivative Formulas

Graph $\mathrm{y}=8$.

What is the slope of any point on $\mathrm{y}=8 ?$

Therefore, if $f(x)=8, f^{\prime}(x)=0$.

Derivative of a constant, c, is zero.

$$
\frac{d}{d x}(c)=0
$$

Graph $\mathrm{y}=\mathrm{x}$.

What is the slope of any point on $y=x$?

Therefore, if $f(x)=x, f^{\prime}(x)=1$.
Derivative of a variable, x, is one.

$$
\frac{d}{d x}(x)=1
$$

Calculate f ' (x) of

$f(x)=x^{2}$
$f(x)=x^{3}$
$f(x)=x^{4}$

Notice a Pattern?
Power Rule: $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
Try: $f(x)=x^{5}, f^{\prime}(x)=$

- Constant Multiple Rule:

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]
$$

Example: $f(x)=3 x^{6} \quad f^{\prime}(x)=$
, General Rule: $\frac{d}{d x}\left[c x^{n}\right]=c \cdot n x^{n-1}$

Find each derivative

$$
\begin{array}{ll}
\text { 1. } \frac{d}{d x}\left(x^{5}\right)= & \text { 5. } \frac{d}{d x}\left(\frac{1}{x}\right)= \\
\text { 2. } \frac{d}{d x}\left(3 x^{4}\right)= & \text { 6. } \frac{d}{d x}\left(\frac{6}{x^{3}}\right)= \\
\text { 3. } \frac{d}{d x}\left(x^{-2}\right)= & \text { 7. } \frac{d}{d x}\left(\frac{1}{\sqrt[3]{x^{2}}}\right)= \\
\text { 4. } \frac{d}{d x}\left(x^{3 / 4}\right)= & \text { 8. } \frac{d}{d x}\left(x^{2} \sqrt{x}\right)=
\end{array}
$$

Sum and Difference Rules:

$$
\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}[g(x)]
$$

- Example:
$\frac{d}{d x}\left[x^{8}+12 x^{5}-4 x^{4}+10 x^{3}-6 x+5\right]=$

