Transformations

Given Triangle ABC,

1. Reflect across x-axis

2. Rotate 180°

3. Translate up 4 units

4. Reflect across y-axis

5. Rotate 90° clockwise

6. Translate left 6 units

7. Reflect across $y=x$

8. Rotate 90° counterclockwise

9. $(x, y) \rightarrow(x-5, y-2)$

\qquad

Geometry

Vertical angles are always \qquad . Draw an example.

Linear pairs always \qquad . Draw an example.

Supplementary angles always \qquad .

Complementary angles always \qquad .

Draw 2 parallel lines cut by a transversal. Label the eight angles 1 through 8.

Name 2 pairs of alternate interior angles.
Alternate interior angles formed by parallel lines are \qquad .

Name 2 pairs of alternate exterior angles.
Alternate exterior angles formed by parallel lines are \qquad .

Name 4 pairs of corresponding angles.
Corresponding angles formed by parallel lines are \qquad .

Name 2 pairs of consecutive (same-side) interior angles.
Consecutive (same-side) interior angles formed by parallel lines are \qquad .

Draw a picture of an exterior angle of a triangle.

The three interior angles of a triangle add up to \qquad

An exterior angle of a triangle is equal to the sum of \qquad .

An isosceles triangle has two \qquad . If the sides are congruent the
\qquad are also congruent.

An equilateral triangle has three \qquad . If all the sides are congruent, then
\qquad -.

A midsegment of a triangle \qquad . It is parallel to the third side and
\qquad . Draw a picture.
\qquad

Congruent figures have congruent sides and angles.

There are 5 ways to prove two triangles are congruent.
List them and draw a picture to show an example of each.

Similar figures have congruent angles and proportional sides.

There are 3 ways to prove two triangles are similar.
List them and draw a picture to show an example of each.

Right Triangles

Pythagorean Theorem: \qquad

Special right triangles:

45/45/90
30/60/90

Trigonometry:
$\operatorname{Sin} A=$ \qquad $\operatorname{Cos} \mathrm{A}=$ \qquad $\operatorname{Tan} \mathrm{A}=$ \qquad

Find a missing side.

Find a missing angle.

