SECTIONS 4.6

Integration with Logarithmic and Exponential Functions

(and a few trig integrals!)

How do you solve $\int \frac{1}{x} d x$

Do you remember a function whose derivative is $1 / \mathrm{x} ? \frac{d}{d x}[\ln x]=\frac{1}{x}$
Therefore $\int \frac{1}{x} d x=\ln |x|+C$
The domain of $1 / \mathrm{x}$ is $(-\infty, 0)(0, \infty)$, but the domain of $\ln x$ is $(0, \infty)$.
So we need to use absolute value.

Examples

$$
\int_{-4}^{-2} \frac{1}{x} d x
$$

$$
\int \frac{x}{x^{2}+1} d x
$$

$\tan x d x$

$$
\int \tan x d x=\ln |\sec x|+C
$$

On Blue Sheets, memorize or not!

You try: $\int \cot x d x$

$$
\begin{aligned}
\int \cot \mathbf{x d x} & =\int \frac{\cos \mathrm{cos} x}{\sin x} \mathrm{dx} \quad \begin{array}{r}
\sin x \\
\mathrm{du}=\boldsymbol{\operatorname { c o s } x} \mathrm{dx}
\end{array} \\
& =\int \frac{\mathrm{du}}{\mathrm{u}}=? \\
& =\ln |u|+C=\ln |\sin x|+C
\end{aligned}
$$

$$
\left.\begin{array}{c}
\int \sec x d x \quad \begin{array}{l}
\text { First, we multiply numerator and } \\
\text { denominator by sec } x+\tan x:
\end{array} \\
\int \sec x d x=\int \sec x \frac{\sec x+\tan x}{\sec x+\tan x} d x \quad \begin{array}{l}
u=\sec x+\tan x \\
d u=\left(\sec x \tan x+\sec ^{2} x\right) d x
\end{array} \\
=\int \frac{\sec ^{2} x+\sec x \tan x}{\sec x+\tan x} d x \\
\int(1 / u) d u=\ln |u|+C
\end{array}\right\}
$$

You try: $\int \csc x d x$

$$
\begin{gathered}
\int \csc x \mathrm{~d} x=\int \frac{\csc ^{2} x+\cot x \csc x}{\csc x+\cot x} \mathrm{~d} x \\
u=\csc x+\cot x, \frac{\mathrm{~d} u}{\mathrm{~d} x}=-\csc ^{2} x-\cot x \csc x \\
=-\int \frac{1}{u} \mathrm{~d} u=-\ln |u| \\
=-\ln |\csc x+\cot x|+C
\end{gathered}
$$

Using trig identities and log rules, you could see this rule in other forms. Such as

$$
\ln |\csc x-\cot x|+C
$$

Exponential Functions $\int e^{x} d x=e^{x}+C$

$\int e^{5 x} d x$

$$
\int a^{x} d x=\frac{a^{x}}{\ln a}+C
$$

$$
\int_{0}^{5} 2^{x} d x
$$

$$
\int 3^{\sin \theta} \cos \theta d \theta
$$

- Calculaugh 51/52
- P. 341 \#41-51 odd,
- p. 351 \#21, 23, 31-41odd, 51, 53, 57

