Lagrange Error Bound Worksheet

1. Let f be a function that has derivatives of all orders on the interval $(-1,1)$. Assume $f(0)=1$, $f^{\prime}(0)=\frac{1}{2}, f^{\prime \prime}(0)=-\frac{1}{4}, f^{\prime \prime \prime}(0)=\frac{3}{8}$, and $\left|f^{(4)}(x)\right| \leq 6$ for all x in the interval $(0,1)$.
(a) Find the third-degree Taylor polynomial about $x=0$ for the function f.
(b) Use your answer to part (a) to estimate the value of $f(0.5)$.
(c) What is the maximum possible error for the approximation made in part (b)?
2. Let f be the function defined by $f(x)=\sqrt{x}$.
(a) Find the second-degree Taylor polynomial about $x=4$ for the function f.
(b) Use your answer to part (a) to estimate the value of $f(4.2)$.
(c) Find a bound on the error for the approximation in part (b).
3. (Calc) Let f be a function that has derivatives of all orders. Assume $f(3)=1$, $f^{\prime}(3)=\frac{1}{2}, f^{\prime \prime}(3)=-\frac{1}{4}, f^{\prime \prime \prime}(3)=\frac{3}{8}$, and the graph of $f^{(4)}(x)$ on $[3,4]$ is shown on the right. The graph of $f^{(4)}(x)$ is increasing on [3, 4].
(a) Find the third-degree Taylor polynomial about $x=3$ for the function f.
(b) Use your answer to part (a) to estimate the value of $f(3.7)$.
(c) Use information from the graph of $y=f^{(4)}(x)$ to show that $|f(3.7)-P(3.7)|<0.08$.

Graph of $f^{(4)}(x)$
(d) Could $f(3.7)$ equal 1.283? Show why or why not.
4. Estimate the error that results when $\sin x$ is replaced by $x-\frac{1}{6} x^{3}$ for $|x|<0.2$. Show your reasoning.
5. Use series to find an estimate for $\int_{0}^{1} e^{-x^{2}} d x$ that is accurate to three decimal places. Justify your answer.
6. Suppose a function f is approximated with a fourth-degree Taylor polynomial about $x=1$. If the maximum value of the fifth derivative between $x=1$ and $x=3$ is 0.01 , that is, $\left|f^{(5)}(x)\right|<0.01$, then the maximum error incurred using this approximation to compute $f(3)$ is
(A) 0.054
(B) 0.0054
(C) 0.26667
(D) 0.02667
(E) 0.00267
7. The maximum error incurred by approximating the sum of the series $1-\frac{1}{2!}+\frac{2}{3!}-\frac{3}{4!}+\frac{4}{5!}-\ldots$ by the sum of the first six terms is
(A) 0.001190
(B) 0.006944
(C) 0.33333
(D) 0.125000
(E) None of these
8. The Taylor series about $x=5$ for a certain function f converges to $f(x)$ for all x in the interval of convergence. The nth derivative of f at $x=5$ is given by $f^{(n)}(5)=\frac{(-1)^{n} n!}{2^{n}(n+2)}$ and $f(5)=\frac{1}{2}$. Show that the sixth-degree Taylor polynomial for f about $x=5$ approximates $f(6)$ with an error less than $\frac{1}{1000}$.

Answers to Worksheet on Series and Error

1. (a) $1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}$
(b) $\frac{157}{128}=1.22656$
(c) The error is at most $\frac{1}{64}=0.015625$
2. (a) $2+\frac{x-4}{4}-\frac{(x-4)^{2}}{64}$
(b) 2.049375
(c) The maximum value of the third derivative $f^{\prime \prime \prime}(x)=\frac{3}{8 x^{5 / 2}}$ on $[4,4.2]$ occurs at $x=4$ and is $\frac{3}{256}$. Then $\left|R_{2}(x)\right| \leq \frac{3 / 256}{3!}(0.2)^{3}=1.5625 \times 10^{-5}$
3. (a) $1+\frac{x-3}{2}-\frac{(x-3)^{2}}{4 \cdot 2!}+\frac{3(x-3)^{2}}{8 \cdot 3!}$
(b) 1.310
(c) Since $f^{(4)}(x)$ is increasing on $[3,4], f^{(4)}(x)<6$ on [3, 3.7] so \mid Error $\left|<\left|\frac{6(3.7-3)^{4}}{4!}\right|=0.060<0.08\right.$.
(d) Yes, $1.250 \leq f(3.7) \leq 1.370$ so $f(3.7)$ could equal 1.283.
4. (a) By the Lagrange Error Bound, since the derivatives of $\sin x$ are $\cos x,-\sin x$, and $-\cos x$, and $|\cos x| \leq 1$ and $|\sin x| \leq 1$, then $\left|R_{3}(x)\right| \leq \frac{(0.2)^{4}}{4!}=0.000067$.
5. Because this is an alternating series whose terms decrease in value, we can truncate after 6 terms and have an error correct to three decimal places.

$$
\int_{0}^{1} e^{-x^{2}} d x \approx 1-\frac{1}{3}+\frac{1}{5(2!)}-\frac{1}{7(3!)}+\frac{1}{9(4!)}-\frac{1}{11(5!)}=0.746729
$$

6. E
7. A
8. $f(6)=\frac{1}{2}-\frac{1}{6}+\frac{1}{16}-\frac{1}{40}+\frac{1}{96}-\frac{1}{224}+\frac{1}{512}-\frac{1}{1152}+\ldots$

This is an alternating series whose terms are decreasing in size so the error involved in approximating $f(6)$ with the sixth-degree Taylor polynomial is less in magnitude than the seventh-degree term.
\mid Error $\left\lvert\,<\frac{1}{1152}<\frac{1}{1000}\right.$ by the Alternating Series Remainder

