Section 2.3 Product and Quotient Formulas

To be differentiable at a point a function must be continuous at the point and the left hand derivative must equal the right hand derivative.

Is $f(x)$ differentiable at $x=0$?

$f(x)=\left\{\begin{array}{l}x^{2}-4, x>0 \\ 2 x-4, x \leq 0\end{array}\right.$

- First check for continuity at $\mathrm{x}=0$.
- Next, check derivatives at $x=0$.

Is $g(x)$ differentiable at $x=1$?
 $g(x)=\left\{\begin{array}{l}8 x-3, x \leq 1 \\ 4 x^{2}+5, x>1\end{array}\right.$

- First check for continuity at $x=1$.
- Next, check derivatives at $x=1$.

Is $\mathrm{h}(\mathrm{x})$ differentiable at $\mathrm{x}=3$?
 $$
h(x)=\left\{\begin{array}{c} x^{2}-4 x+8, x \leq 3 \\ 2 x-1, x>3 \end{array}\right.
$$

- First check for continuity at $\mathrm{x}=3$.

Next, check derivatives at $x=3$.

Find b and c so that $f(x)$ is differentiable at $\mathrm{x}=1$

$$
f(x)=\left\{\begin{array}{c}
3 x^{2}+4 x, x \leq 1 \\
2 x^{3}+b x+c, x>1
\end{array}\right.
$$

You try: Find a and b so that $f(x)$ is differentiable at $\mathrm{x}=2$

$$
f(x)=\left\{\begin{array}{c}
a x^{2}+10, x<2 \\
x^{2}-6 x+b, x \geq 2
\end{array}\right.
$$

- You may think the product rule works like the sum rule for derivatives, but that is not true.

$$
\begin{gathered}
y=x^{3} \text { can be written } y=x * x^{2} \\
y^{\prime}=3 x^{2} \quad y^{\prime}=1 * 2 x \\
3 x^{2} \neq 2 x
\end{gathered}
$$

Product Rule: $(f \cdot g)^{\prime}=f \cdot g^{\prime}+f^{\prime} \cdot g$

- Example:

$$
f(x)=\left(6 x^{3}\right)\left(7 x^{4}\right)
$$

Product Rule: $(f \cdot g)^{\prime}=f \cdot g^{\prime}+f^{\prime} \cdot g$

- Example:

$$
\frac{d}{d x}\left[\left(x^{2}+3\right)\left(2 x^{3}+5 x\right)\right]
$$

This rule will come in handy for non-polynomial functions such as $f(x)=x^{2} \sin x$.

Quotient Rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-g^{\prime} f}{g^{2}}$

Lo De Hi - Hi De Lo
$(\mathrm{Lo})^{2}$

Quotient Rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-g^{\prime} f}{g^{2}}$

Example: $y=\frac{x^{2}+x-2}{x^{3}+6}$

