Properties of Integrals

1. $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$

The width of the rectangle has change from $\frac{b-a}{n}$, a positive number to $\frac{a-b}{n}$, a negative number
2. $\int_{a}^{a} f(x)=0$

The area of a rectangle whose width is zero.
3. $\int_{a}^{b} c d x=c(b-a)$, where c is a constant

The integral is the area of a rectangle whose width is $\mathrm{b}-\mathrm{a}$ and whose height is c

$$
\text { 4. } \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x
$$

The width has not changed. If the height is 2 times the y-values of $f(x)$, then the area is twice as large as the area under $f(x)$.
5. $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$

(c) Sum: (areas add)

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Evaluate $\int_{5}^{7}\left(4+3 x^{2}\right) d x$ if $\int_{5}^{7} x^{2} d x=\frac{218}{3}$

6. IF B IS BETWEEN A AND C, $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$

$\int_{0}^{10} f(x) d x=17$ and $\int_{0}^{8} f(x) d x=12$ Find $\int_{8}^{10} f(x) d x$
