\qquad

Quadratic Equations

1. Standard Form: \qquad
The y-intercept is always (0 , \qquad). The axis of symmetry is $x=$ \qquad

Make up a quadratic equation in standard form and find the y-intercept and the axis of symmetry.

2. Vertex Form:

\qquad

The vertex is always (\qquad , 1

Make up a quadratic equation in vertex form and find the vertex.
\qquad
3. Intercept Form: \qquad

The x -intercepts are always $(\ldots, 0)$ and $(\ldots, 0)$

Make up a quadratic equation in intercept form and find the x-intercepts.
\qquad
4. Parent Function $\mathbf{y}=\mathbf{x}^{2}$

Graph:

Characteristic Points:

5. Transformations: $y=a(x \pm h)^{2} \pm k$

What does \boldsymbol{h} do?
What does \boldsymbol{k} do? \qquad
What does \boldsymbol{a} do?
What if \boldsymbol{a} was negative?

Make up your own quadratic equation:

Describe the transformations:

What inequality symbols are used for the following?

Graph it:

Dashed parabola: \qquad
Shade up:

Graph each inequality.
$y>-x^{2}+2 x+1$
Standard form
vertex:

Find AOS first.
Plug AOS into equation to find y
value of vertex.
Plot characteristic points up or
down?
Solid or dotted?
Shade up or down?

$y \leq 2(x-2)^{2}-3$
vertex form
vertex:

Plot points up or down? Characteristic points? Solid or dotted? Shade up or down?

$y \geq(x-3)(x+1)$
intercept form
x-int:
vertex:
AOS is in the middle between the x intercepts.

Find y value of vertex.

Plot Characteristic points up or down?
Solid or dotted? Shade up/down?

1. Get equation to equal \qquad
2. Enter the equation in \qquad on the calculator.
3. Have the calculator find the \qquad .

Practice: $x^{2}=10 x-21 \quad x=$ \qquad or $x=$ \qquad

Remember a quadratic equation can have $\mathbf{2}$ real solutions, 1 real solutions or $\mathbf{2}$ imaginary solutions.

Sketch a graph that illustrates each.

2 real solutions

1 real solution

imaginary solutions

7. Solve by factoring: 1 . Make sure the equation equals \qquad .
2. Divide by the \qquad -
3. If it is a trinomial that starts x^{2}, find two numbers that \qquad to get c , and \qquad to get b .
4. If it is a trinomial that starts ax^{2}, rewrite as \qquad terms and use grouping.
5. If it is a binomial, check that is a difference square pattern, which is \qquad .
$x^{2}-2 x-15=0$
$4 y^{2}-25=0$
$2 w^{2}-3 w=9$
$2 a^{2}+60=-22 a$
8. Solve by square roots: Use when there is only one x in the equation.

1. Isolate the radical.
2. \qquad both sides to eliminate the exponent, creating two values, one \qquad and one \qquad .
3. You will get an imaginary number when \qquad

$$
3(x+4)^{2}-18=0 \quad 4 x^{2}+100=0
$$

9. Solve by completing the square: Starting with $a x^{2}+b x+c=0$
10. Divide by a and move c to the other side.
11. Draw a square on each side.
12. Put \qquad in each square.
13. Rewrite the left side as \qquad , and simplify the right side.
14. Square root both side. Don't for the \qquad .

$$
3 x^{2}+6 x-12=0
$$

10. Solve using the quadratic formula. Make sure the equation equals \qquad

The formula is $x=$ \qquad
$6 x^{2}+x-15=0$

$$
x^{2}+25=10 x
$$

11. Projectile Motion:

We want to know the starting height (which is \qquad on the graph), the maximum height and when in occurs (which is \qquad on the graph),
and when the ball hits the ground (which is \qquad on the graph).

- A rocket is fired into the air. Its height, in feet, is defined by the equation: $h(t)=-16 t^{2}+64 t+2240$. Time is measured in seconds.

What is the starting height? \qquad

- A football is kicked into the air. Its height in meters after t seconds in given by $h(t)=-4.9(t-2.4)^{2}+29$.

What is the maximum height of the ball? \qquad When did it reach this height? \qquad

- An object is launched at 19.6 from a platform. The equation for the object's height s at time t seconds after launch is $h(t)=-4.9(t-6)(t+2)$, where s is in meters.

When did the object reach the ground?
12. Systems: Graph a system of equations using your calculator.

The solutions are the \qquad

Solve with a calculator: $\left\{\begin{array}{c}y=-2(x+1)^{2}+1 \\ 2 x+y=-3\end{array}\right.$

Graph the system: $\left\{\begin{array}{c}y \geq(x-3)^{2}-6 \\ y>\frac{1}{2} x-4\end{array}\right.$

Parabola	Line
Vertex	y-intercept
Open up/down	slope
Characteristic pts.	

Solid/dotted

Shade up/down

Solid/dotted
Shade up /down

Name a point that is part of the solution

