MULTIPLE-CHOICE QUESTIONS

A calculator may not be used for the following questions.

1. Which of the following series is absolutely convergent?

(A)
$$\sum_{k=0}^{\infty} (-1)^k \frac{k+3}{k+\sqrt{k}}$$

(B)
$$\sum_{k=0}^{\infty} (-1)^k \frac{3}{\sqrt{k}}$$

(C)
$$\sum_{k=0}^{\infty} (-1)^{k+1} \sqrt[4]{\frac{\sqrt{k}}{k+3}}$$

(D)
$$\sum_{k=0}^{\infty} (-1)^{k+1} \frac{3}{k\sqrt{k}}$$

2. The power series $\sum_{k=1}^{\infty} \frac{x^k}{k}$ converges for which values of x?

(A)
$$-1 < x < 1$$

(B)
$$-1 \le x < 1$$

(C)
$$-1 \le x \le 1$$

- (D) x is any real number.
- 3. Which of the following series is the power series expansion for $f(x) = x(\cos x 1)$?

(A)
$$x - \frac{x^3}{2} + \frac{x^5}{24} - \cdots$$

(B)
$$-x^3 + x^5 - x^7 + \cdots$$

(C)
$$\frac{x^3}{2} - \frac{x^5}{24} + \frac{x^7}{720} - \cdots$$

(D)
$$-\frac{x^3}{2} + \frac{x^5}{24} - \frac{x^7}{720} + \cdots$$

4. What are all values of a for which the series $\sum_{k=0}^{\infty} \left(\frac{5}{9-a}\right)^k$ converges?

(A)
$$a < 4$$

(B)
$$4 < a < 14$$

(C)
$$a < 9$$

(D)
$$a < 4$$
 or $a > 14$

- 5. The Maclaurin series for $f(x) = \frac{1}{1 \pm x^2}$ is $\sum_{k=0}^{\infty} (-1)^k x^{2k}$. What is the Maclaurin series for $g(x) = \tan^{-1} x$?
 - (A) $C + \sum_{k=0}^{\infty} (-1)^k (2k) x^{2k-1}$
 - (B) $C + \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$
 - (C) $C + \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^{2k+1}}{2k}$
 - (D) $C + \sum_{k=0}^{\infty} (-1)^{k-1} \frac{X^{2k-1}}{2k}$
- 6. The Maclaurin series $\sum_{k=0}^{\infty} (-9)^k \frac{x^{4k}}{(2k)!}$ represents which function
 - below?
 - (A) $\cos(3x^2)$
 - (B) $\sin(3x^2)$
 - (C) $\cos(9x^4)$
 - (D) e^{-3x^2}
- 7. If the first five terms of the Taylor expansion for f(x) about x = 0 are

$$3-7x+\frac{5}{2}x^2+\frac{3}{4}x^3-6x^4$$
, then $f'''(0)=$

- (A) $\frac{1}{8}$
- (B) $\frac{3}{4}$
- (C) $\frac{9}{2}$
- (D) 6
- 8. Which of the following series diverge?
 - $I. \quad \sum_{k=0}^{\infty} \frac{k^{\frac{3}{2}} + 1}{5k^2 + 7}$
 - II. $\sum_{k=2}^{\infty} (-1)^k \frac{1}{\ln(k)}$
 - III. $\sum_{k=0}^{\infty} (-1)^k \left(\frac{4}{3}\right)^k$
 - (A) I only
 - (B) II only
 - (C) I and II only
 - (D) I and III only

A calculator may be used for the following questions.

- 9. The sixth degree term of the Taylor series expansion for $f(x) = e^{-\frac{1}{2}x^2}$ about x = 0 has coefficient
 - (A) $-\frac{1}{48}$
 - (B) $-\frac{1}{6}$
 - (C) $\frac{1}{720}$
 - (D) $-\frac{1}{4608}$
- 10. Let $T_n(x)$ represent the Taylor Polynomial of degree n about x = 0 for $f(x) = e^{-x}$. If $T_n(2)$ is used to approximate the value of $f(2) = e^{-2}$, then which of the following expressions is NOT less than
 - $\frac{2^{7}}{7!}$?
 - (A) $f(2) T_6(2)$
 - (B) $T_6(2) f(2)$
 - (C) $f(2) T_5(2)$
 - (D) $T_5(2) f(2)$
- *11. For function f(x), f(0) = 3, f'(0) = 2, f''(0) = 5, and f'''(0) = 4. Using the Taylor series expansion for f(x) about x = 0, the second degree estimate for f'(0.1) is
 - (A) 2.500
 - (B) 2.520
 - (C) 3.120
 - (D) 3.225

A calculator may not be used for the following questions.

12. The Maclaurin series $\sum_{k=0}^{\infty} (-5)^k \frac{x^{3k+2}}{k!}$ represents which expression

below?

- (A) $x^2 e^{-5x^3}$
- (B) $-5e^{3x+2}$
- (C) $x^2 \sin(-5x^3)$
- (D) $-5\cos(x^3)+2$

- 13. If $f(x) = \sin(x^2)$, the first three terms of the Taylor series expansion about x = 0 for f'(x) are
 - (A) $2x x^3 + \frac{1}{2}x^5$
 - (B) $1 \frac{1}{2}x^4 + \frac{1}{16}x^8$
 - (C) $2x x^5 + \frac{1}{12}x^9$
 - (D) $x^2 \frac{1}{6}x^6 + \frac{1}{120}x^{10}$
- 14. Which of the following series is conditionally convergent?
 - (A) $\sum_{k=1}^{\infty} (-1)^k \frac{k^2+1}{k+4}$
 - (B) $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{2}{k+1}$
 - (C) $\sum_{k=1}^{\infty} (-1)^{k+1} \ln(k+1)$
 - (D) $\sum_{k=1}^{\infty} (-1)^k \frac{k+3}{k^3+7}$
- 15. The radius of convergence of the power series $\sum_{k=0}^{\infty} \frac{x^{2k}}{k \cdot 4^k}$ is
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 4

FREE-RESPONSE QUESTION

A calculator may be used for this question.

Let f(x) be a function that is differentiable for all x. The Taylor expansion for f(x) about x = 0 is given by $T(x) = \sum_{k=0}^{\infty} (-1)^k \frac{(k+1)x^{3k}}{k!}$. The

first four nonzero terms of T(x) are given by $T_4(x) = 1 - 2x^3 + \frac{3x^6}{2!} - \frac{4x^9}{3!}$.

- (a) Show that T(x) converges for all x.
- (b) Let W(x) be the Taylor expansion for $x^2 f'(x)$ about x = 0. Find the general term for W(x) and find $W_3(x)$.
- (c) $f(0.5) \approx T_4(0.5)$ and $f(1) \approx T_4(1)$. Find the values of $T_4(0.5)$ and $T_4(1)$.
- (d) Which value is smaller, $|f(0.5) T_4(0.5)|$ or $|f(1) T_4(1)|$? Give a reason for your answer.