SECTION 3.10 LINEAR APPROXIMATION

A tangent line can approximate a y-value on a curve if the x-value is <u>very</u> close to the point of tangency.

$$y_1 = x^2$$
 $y_2 = tangent line at (1, 1)$

$Y_1 = X^2$ $Y_2 = 2X - 1$

Enter both equations into your calculator.

Look at the table of values

X	Y1	Y2
1		
2		
1.1		
1.0001		

$$Y_1 = X^2$$
 $Y_2 = 2X - 1$

Now look at the graphs.

Zoom in at (1,1)

Tangent line is the **linearization** of f(x) at x = a.

Written $y = m(x-x_1) + y_1$

You can use the linearization to approximate values on the curve near the point of tangency.

EXAMPLE

- Find the linearization of $f(x) = \sqrt{x+1}$ at x = 0.
- Then use the linearization to approximate $\sqrt{1.05}$
- Is the approximation an over or under estimate.

EXAMPLE

- Find the linearization of $f(x) = \tan x$ at $x = \pi$.
- Then use the linearization to approximate tan (3.2).
- Is the approximation an over or under estimate.

EXAMPLE 1 PAGE 205

• A turkey is cooking in the oven, and Macon is measuring its temperature at regular intervals. As she puts the turkey in the oven, its temperature is 50°. After the first hour of cooking, its temperature is 93°. After 2 hours of cooking, its temperature is 129°. Predict what the temperature could be after three hours of cooking.