Section 3.10 Linear Approximation

A tangent line can approximate a y-value on a curve if the x-value is very close to the point of tangency.
$y_{1}=x^{2}$
$y_{2}=$ tangent line at $(1,1)$

$$
Y_{1}=X^{2} \quad Y_{2}=2 X-1
$$

Enter both equations into your calculator.

Look at the table of values

X	$Y 1$	$Y 2$
1		
2		
1.1		
1.0001		

$$
Y_{1}=X^{2}
$$

$$
Y_{2}=2 x-1
$$

Now look at the graphs.

Zoom in at (1,1)

Tangent line is the linearization of $f(x)$ at $x=a$.

Written $\mathrm{y}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)+\mathrm{y}_{1}$
You can use the linearization to approximate values on the curve near the point of tangency.

EXAMPLE

- Find the linearization of $f(x)=\sqrt{x+1}$ at $\mathrm{x}=0$.
- Then use the linearization to approximate $\sqrt{1.05}$
- Is the approximation an over or under estimate.

EXAMPLE

- Find the linearization of $f(x)=\tan x$ at $x=\pi$.
- Then use the linearization to approximate tan (3.2) .
- Is the approximation an over or under estimate.

Example 1 PAGE 205

- A turkey is cooking in the oven, and Macon is measuring its temperature at regular intervals. As she puts the turkey in the oven, its temperature is 50°. After the first hour of cooking, its temperature is 93°. After 2 hours of cooking, its temperature is 129°. Predict what the temperature could be after three hours of cooking.

