SECTION 10.2

Differential Equations and Slope Fields

• A differential equation is an equation involving a derivative. The solution is the function y.

• Solve
$$\frac{dy}{dx} = x^2$$
, $y(1) = 4$

General solution

Particular solution

- What if the function is too complicated to find the antiderivative?
- A <u>slope field</u> (aka "direction field") is a tool to estimate the solution graph without actually integrating the differential equation.

DRAW A SLOPE FIELD FOR $\frac{dy}{dx} = x^2$

Computer generated slope field

1 -2-

Draw the particular solution through y(0) = 1

SOLVE $\frac{dy}{dx} = -xy$

X	У	dy/dx	

2

-2----

YOUR DRAWINGS SHOULD CLEARLY SHOW

- •Positive vs. negative slopes
- •Slopes of 1 and -1
- •Whether slopes are increasing or decreasing
- •Zero and undefined slopes
- •Do NOT plot at points where dy/dx is indeterminate (0/0)
- •Symmetry

SPECIFIC SOLUTIONS SHOULD

- •Show point plotted at the given initial condition
- •Flow through the slope field from edge to edge
- •Be functions (i.e. pass the Vertical Line Test)
- •Never, never, never cross a slope line!
- •Never cross a gap, DNE, or vertical tangent.

5. $\frac{dy}{dx} = y - 1$

-	•	•	t	•	•	•	
-	•	•	ł	•		•	
			+			-	-
٠.	•		ł			•	
		•	ŀ				

6.
$$\frac{dy}{dx} = -\frac{y}{x}$$

-	•	•	t	•	•	•	
•	·	•	ł	•	•	•	
			+				-
••		•	ł	·	•		
		•	ŀ				

 $1. \quad \frac{dy}{dx} = x+1$ 3. $\frac{dy}{dx} = x + y$ 4 1 5. $\frac{dy}{dx} = y - 1$ 6. $\frac{dy}{dx} = -\frac{y}{x}$ +1 1 1 2 3 12/13 when x=0, undef. y=0, dy=0 Permission to use aranted by Nancy Stepheneon

MATCHI	NG
7. $y = 1$	7.D
8 v = r	8.H
y = x	9.C
9. $y = x^2$	10.F
10. $y = \frac{1}{6}x^3$	11.A
11. $y = \frac{1}{2}$	$12.\mathrm{E}$
x ²	13.B
12. $y = \sin x$	14.G
13. $y = \cos x$	
14. $y = \ln x $	

Match each slope field with the equation that the slope field could represent. (A) (B)

(C)

(E)

(G)

ر سر مر

(F)

(H)

MATCHING

15. B 16.D 17.C 18.A Match the slope fields with their differential equations.

(D)

 $15. \quad \frac{dy}{dx} = \frac{1}{2}x + 1$

16. $\frac{dy}{dx} = y$

17.
$$\frac{dy}{dx} = x - y$$
18.
$$\frac{dy}{dx} = -\frac{x}{x}$$

dx

y

(B)

- 19. The calculator drawn slope field for the differential equation $\frac{dy}{dx} = xy$ is shown in the figure below. The solution curve passing through the point (0, 1) is also shown.
 - (a) Sketch the solution curve through the point (0, 2).
 - (b) Sketch the solution curve through the point (0, -1).

20. The calculator drawn slope field for the differential equation $\frac{dy}{dx} = x + y$ is shown in

the figure below.

- (a) Sketch the solution curve through the point (0, 1).
- (b) Sketch the solution curve through the point (-3, 0).

