## SECTION 10.2

Differential Equations and Slope Fields

- A differential equation is an equation involving a derivative. The solution is the function $y$.
- Solve $\frac{d y}{d x}=x^{2}, \mathrm{y}(1)=4$

General solution
$y=\frac{1}{3} x^{3}+C$


Particular solution
$y=\frac{1}{3} x^{3}+3.667$


- What if the function is too complicated to find the antiderivative?
- A slope field (aka "direction field") is a tool to estimate the solution graph without actually integrating the differential equation.


## DRAW A SLOPE FIELD FOR $\frac{d y}{d x}=x^{2}$




Computer generated slope field

Draw the particular solution through $\mathrm{y}(0)=1$

$$
\text { SOLVE } \frac{d y}{d x}=-x y
$$



## Your Drawings should cLearly show

-Positive vs. negative slopes

- Slopes of 1 and -1
-Whether slopes are increasing or
decreasing
-Zero and undefined slopes
-Do NOT plot at points where dy/dx is
indeterminate (0/0)
-Symmetry


## SPECIFIC SOLUTIONS SHOULD

- Show point plotted at the given initial condition
-Flow through the slope field from edge to edge
-Be functions (i.e. pass the Vertical Line Test)
- Never, never, never cross a slope line!
- Never cross a gap, DNE, or vertical tangent.

You try:
3. $\frac{d y}{d x}=x+y$

5. $\frac{d y}{d x}=y-1$

4. $\frac{d y}{d x}=x+1$

6. $\frac{d y}{d x}=-\frac{y}{x}$

3. $\frac{d y}{d x}=x+y$

1. $\frac{d y}{d x}=x+1$

2. $\frac{d y}{d x}=y-1$
3. $\frac{d y}{d x}=-\frac{y}{x}$


$$
y=0, \frac{d y}{d x}=0
$$

Match each slope field with the equation that the slope field could represent.
(A)

(C)

(E)

(G)

(B)

(D)

(F)

(H)


## MATCHING

Match the slope fields with their differential equations.
(A)

(C)

15. $\frac{d y}{d x}=\frac{1}{2} x+1$
16. $\frac{d y}{d x}=y$
15. B
16.D
17.C
18.A
(B)

(D)

|  |  |
| :---: | :---: |
|  |  |
| 414 | -1/11 |
| \ \ \ | , |
| , 1 1 | , |
|  |  |

17. $\frac{d y}{d x}=x-y$
18. $\frac{d y}{d x}=-\frac{x}{y}$
19. The calculator drawn slope field for the differential equation $\frac{d y}{d x}=x y$ is shown in the figure below. The solution curve passing through the point $(0,1)$ is also shown.
(a) Sketch the solution curve through the point $(0,2)$.
(b) Sketch the solution curve through the point $(0,-1)$.

20. The calculator drawn slope field for the differential equation $\frac{d y}{d x}=x+y$ is shown in the figure below.
(a) Sketch the solution curve through the point $(0,1)$.
(b) Sketch the solution curve through the point $(-3,0)$.

