HIGHER ORDER DERIVATIVES AND MOTION

Section 2.3

Motion

This is the position function $\mathrm{s}(\mathrm{t})$. It shows the displacement (distance from starting point) as a function of time. Units for $s(t)$ are meters.

$$
\text { Velocity }=\frac{\text { change in position }}{\text { change in time }}
$$

Average velocity is the slope between two points. Instantaneous velocity is velocity at a specific time which would be the derivative at a point: $\quad v(t)=s^{\prime}(t)$.
The units for velocity are m / s.

■ Velocity shows both speed and direction. Positive velocity means moving forwards or upwards.
Negative velocity means moving backwards or down.
$■$ Speed is the absolute value of velocity.

Acceleration $=\frac{\text { change in velocity }}{\text { change in time }}$

- Average acceleration is the slope between two points of velocity.
- Instantaneous acceleration is acceleration at a specific time which would be the derivative at a point: $\quad a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$.
- The units for acceleration are $\mathrm{m} / \mathrm{s}^{2}$.

$$
\text { Jerk }=\frac{\text { change in acceleration }}{\text { change in time }}
$$

- Average jerk is the slope between two points of acceleration.
- Instantaneous jerk is jerk at a specific time which would be the derivative at a point:

$$
\mathrm{j}(\mathrm{t})=\mathrm{a}^{\prime}(\mathrm{t})=v^{\prime \prime}(t)=s^{\prime \prime \prime}(t)
$$

- The units for acceleration are $\mathrm{m} / \mathrm{s}^{3}$.

Example: The position of a particle is given by $s(t)=t^{3}-6 t^{2}+9 t$, with time in seconds and position in meters.

A. Find acceleration at 4 seconds.

B. When is the particle not moving?

Particle is not moving when $v(t)=0$

$$
\begin{gathered}
v(t)=s^{\prime}(t)=3 t^{2}-12 t+9=0 \\
t^{2}-4 t+3=0 \\
(t-1)(t-3)=0 \\
t=1 \text { or } 3
\end{gathered}
$$

Particle is not moving at 1 sec and 3 sec

Example: On the moon, an arrow is shot

 upwards at a velocity of $58 \mathrm{~m} / \mathrm{s}$. Its height after t seconds is given by $h(t)=58 t-0.83 t^{2}$.What is its velocity when it hits the ground?
The height when the arrow hits the ground is zero, so find when $h(t)=0$.

$$
\begin{gathered}
h(t)=58 t-0.83 t^{2}=0 \\
t(58-0.83 t)=0 \\
t=0 \text { or } \frac{58}{0.83}
\end{gathered}
$$

Arrow started on the ground, then returned to the ground at 58/0.83 seconds.

$$
v(t)=h^{\prime}(t)=58-1.66 t
$$

$$
v\left(\frac{58}{0.83}\right)=58-1.66\left(\frac{58}{0.83}\right)=-0.58 \mathrm{~m} / \mathrm{s}
$$

Velocity is negative because the arrow was traveling down in a negative direction. The speed of the arrow was $0.58 \mathrm{~m} / \mathrm{s}$.

