## SECTION 5.5 U-SUBSTITUTION

- Review: $\frac{d}{d x}\left[\frac{1}{4}\left(x^{2}+5\right)^{4}\right]=$

$$
\int\left(x^{2}+5\right)^{3}(2 x) d x=
$$

- A process used to reverse the chain rule is called "U-substitution".

$$
\int\left(x^{2}+5\right)^{3}(2 x) d x=
$$

EXAMPLES

$$
\int\left(x^{2}-8\right)^{4}(x) d x=
$$

TRY: $\int \sqrt{5 x+2} d x=$

Examples
$\int 4 \cos (4 x) d x=$
$\int \sin ^{3} x \cos x d x=$

What would you let $\mathrm{u}=$ in the following examples?

$$
\begin{array}{ll}
\int 3(3 x-1)^{4} d x & \mathrm{u}=3 \mathrm{x}-1 \\
\int(2 x+1)\left(x^{2}+x\right) d x & \mathrm{u}=\mathrm{x}^{2}+\mathrm{x} \\
\int 3 x^{2} \sqrt{x^{3}-2} d x & \mathrm{u}=\mathrm{x}^{3}-2 \\
\int \frac{-4 x}{\left(1-2 x^{2}\right)} d x & \mathrm{u}=1-2 \mathrm{x}^{2} \\
\int \cos ^{2} x \sin x d x & \mathrm{u}=\cos \mathrm{x}
\end{array}
$$

## Here's a Tricky one:

$\int x \sqrt{5 x+2} d x$

Practice: p. 366 \#7-31 odd

