Section 6.1 Area between
 Curves

WE HAVE FOUND AREA UNDER A CURVE USING INTEGRATION

Today we will find The area between

Area of region between f and $\mathrm{g}=$

$$
\begin{array}{ll}
= & \text { Area of region } \\
\text { under } \mathrm{f}(\mathrm{x})
\end{array}
$$

- Area of region under $\mathrm{g}(\mathrm{x})$

$$
\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
$$

Example: Find the area of the REGION BOUND BY $\mathrm{Y}=4 \operatorname{AND} \mathrm{Y}=\mathrm{X}^{2}$

Step 1: Sketch graph of region

Step 2: Set functions equal to each other to find intersection points

Step 3: Set up integral
\int_{a}^{b} top curve - bottom curve $d x \quad \int_{-2}^{2} 4-x^{2} d x$

Step 4: Evaluate using
Area $=10.667$ calculator

You try:
Find the area of the region enclosed by the parabolas $y=x^{2}$ and $y=2 x-x^{2}$.

From the figure, we see that the top and bottom boundaries are:

$$
\begin{aligned}
& \quad y_{T}=2 x-x^{2} \quad \text { and } \\
& x^{2}=2 x-x^{2} \text {, or } 2 x^{2}-2 x=0 \text {. } \\
& \text { Thus, } 2 x(x-1)=0 \text {, } \\
& \text { so } x=0 \text { or } 1 \text {. } \\
& A=\int_{0}^{1} 2 x-2 x^{2} d x=2 \int_{0}^{1} x-x^{2} d x \\
& =2\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=2\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{1}{3}
\end{aligned}
$$

Find area of region bound by y $=1-\cos \mathrm{X}$,

 $y=e^{-x^{2}}$, AND X $=0$.Find the intersection point using your calculator. It will be stored as letter x.

$$
\begin{gathered}
\mathrm{X}=.94194408 \\
\int_{0}^{x} e^{-x^{2}}-(1-\cos x) d x=0.591
\end{gathered}
$$

To find the area between $f(x)$ and $g(x)$ on the interval from a to b, you must split the area into 3 regions.

$$
\int_{a}^{c} f(x)-g(x) d x+\int_{c}^{d} g(x)-f(x) d x+\int_{d}^{b} f(x)-g(x) d x
$$

EXAMPLE: FIND THE AREA OF THE REGION BOUND BY $\mathrm{Y}=\operatorname{SIN} \mathrm{X}, \mathrm{Y}=\operatorname{COS} \mathrm{X}, \mathrm{X}=0 \operatorname{AND} \mathrm{X}=\Pi / 2$

1. Sketch graph.
2. Find intersection point.

$$
\begin{aligned}
\sin x & =\cos x \\
x & =\pi / 4
\end{aligned}
$$

3. Set up integral.
$\int_{0}^{\pi / 4} \cos x-\sin x d x+\int_{\pi / 4}^{\pi / 2} \sin x-\cos x d x$

Or if you notice symmetry
Area $=.828$

$$
2 \int_{0}^{\pi / 4} \cos x-\sin x d x
$$

Find the area enclosed by the line $Y=X-1$ AND THE PARABOLA $Y^{2}=2 X+6$.

1. Sketch graph and find the intersection pts. $y^{2}=2 x+6$ is not a function, need to solve for y and graph each function separately.
2. Set up integral.

$$
\int_{-3}^{-1} \sqrt{2 x+6}-(-\sqrt{2 x+6}) d x+\int_{-1}^{5} \sqrt{2 x+6}-(x-1) d x
$$

$$
\text { Area }=18
$$

$$
\begin{array}{r}
y \\
e s, ~
\end{array}
$$

$$
\int_{x-\text { value }}^{x-\text { value }} \text { top curve }- \text { bottom curve } d x
$$

Sometimes it is easier to calculate the area using horizontal rectangles.

Notice the equations have been written in terms of y.

$$
\begin{gathered}
\int_{y-\text { value }}^{y-\text { value }} \text { right curve }- \text { left curve } d y \\
\int_{-2}^{4} y+1-\left(\frac{1}{2} y^{2}-3\right) d y=18
\end{gathered}
$$

Try Finding the area Both ways

Find the area of the region bound by $\mathrm{y}=\mathrm{x}-2, y=\sqrt{x}$, and the x -axis.

$$
\int_{0}^{2} \sqrt{\text { Top - Bottom }} \sqrt{x}-0 d x+\int_{2}^{4} \sqrt{x}-(x-2) d x \quad(4,2)
$$

Right - Left
Right: $\mathrm{x}=\mathrm{y}+2$, Left: $\mathrm{x}=\mathrm{y}^{2}$

$$
\int_{0}^{2} y+2-y^{2} d y
$$

- Practice page 380 \#1-9 odd, 17,19,21

