SECTION 6.2 Volume of Solids OF REVOLUTION

- A solid of revolution is a solid that is generated by revolving a plane region about a line.
- Let our region be enclosed by $y=\sqrt{x}, \mathrm{y}=0$ and $\mathrm{x}=4$.

Let's rotate the region about the x -axis to create a solid.

What shape are the cross sections?

Circles

What is the radius of the circles?

$$
\text { Radius }=\mathrm{y}=\sqrt{x}
$$

Volume would be the sum of all the circle from 0 to 4 .

$$
\begin{aligned}
& V=\int_{0}^{4} \pi r^{2} d x=\int_{0}^{4} \pi(\sqrt{x})^{2} d x=\pi \int_{0}^{4} x d x \\
& \text { Volume }=\left.\frac{\pi}{2} x^{2}\right|_{0} ^{4}=8 \pi u^{3}
\end{aligned}
$$

Revolve the region bound by $y=x^{2}, \mathrm{y}=0$ and $\mathrm{x}=2$ about the x -axis.

What would the solid look like?

Revolve the region bound by $y=\sqrt{16-x^{2}}, y=0$, and $x=0$ about the y-axis

$$
r=x=f(y)
$$

$$
\text { Volume }=\int_{0}^{4} \pi r^{2} d y
$$

$$
\begin{aligned}
y & =\sqrt{16-x^{2}} \\
y^{2} & =16-x^{2} \\
x^{2} & =16-y^{2} \\
x & =\sqrt{16-y^{2}}
\end{aligned}
$$

$$
=\int_{0}^{4} \pi\left(\sqrt{16-y^{2}}\right)^{2} d y
$$

$$
=\pi \int_{0}^{4} 16-y^{2} d y
$$

$$
=\frac{128}{3} \pi \text { units }^{3}
$$

Find the volume of the solid generated by revolving

 THE REGION DEFINED BY $y=2-x^{2}$, AND $\mathrm{Y}=1$, ABOUT $\mathrm{Y}=1$.

The volume is the sum of circles from x-value to x-value.

$$
\begin{aligned}
2-x^{2} & =1 \\
x^{2} & =1 \\
x & =1,-1
\end{aligned}
$$

Radius is top curve -

$$
\text { Volume }=\int_{-1}^{1} \pi r^{2} d x
$$ bottom curve

Radius $=\left(2-\mathrm{x}^{2}\right)-1$
$=1-\mathrm{x}^{2}$

$$
\begin{aligned}
& \int_{-1}^{1} \pi\left(1-x^{2}\right)^{2} d x \\
& =\frac{16}{15} \pi \text { units }^{3}
\end{aligned}
$$

Practice problems page 391 \#1-6, 12, 15

