Section 6.4 Arc length and Surface Area of Revolution

Start with something easy

The length of the line segment joining points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ is

$$
\sqrt{\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-y_{1}\right)^{2}}
$$

The more segments, the better the approximation.

We could approximate the length of a curve, $f(x)$, from a to b using a segment connecting the endpoints.

If we divide the curve into two intervals and add up the length of two segments, we get a better
approximation.

For a demonstration, let's visit the web.

$$
\begin{aligned}
\text { Arc length, } \mathrm{L}= & \int_{a}^{b} \sqrt{(x-x)^{2}+(y-y)^{2}} \\
& L=\int_{a}^{b} \sqrt{(d x)^{2}+(d y)^{2}}
\end{aligned}
$$

This is not quite in the form that we prefer, since we need a $d x$ or $d y$ outside the square root. So, if we multiply by $\frac{(d x)^{2}}{(d x)^{2}}$

$$
L=\int_{a}^{b} \sqrt{\left(\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}\right) *(d x)^{2}}=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

$\frac{d y}{d x}$ is the slope between two points. And as our points get closer and closer together, we get an instantaneous slope, or the first derivative!

The Formula:

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Example Problem

- Compute the arc length of the graph of

$$
f(x)=x^{3 / 2} \text { over }[0,1]
$$

$$
\begin{gathered}
L=\int_{0}^{1} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \quad f^{\prime}(x)=\frac{3 x^{1 / 2}}{2} \\
L=\int_{0}^{1} \sqrt{1+\left[\frac{3 x^{1 / 2}}{2}\right]^{2}} d x \\
L \approx 1.44
\end{gathered}
$$

What are we doing next?

- Instead of calculating the volume of the rotated surface, we are now going to calculate the surface area of
 the solid of revolution

The Lateral Surface Area of a

 Cylinder (label on a can) $=$ circumference $*$ height $=2 \pi r h$When you rotate a function, the "height" is the length of the curve.

(a) Surface of revolution

$$
S A=\int_{a}^{b} 2 \pi r \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

$$
S A=\int_{a}^{b} 2 \pi r \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

When rotating around a vertical line, $r=x$.

When rotating around a horizontal line, $r=y=f(x)$.

Surface Area (examples)

Calculate the surface area when the curve $f(x)=x^{2}$ on [0, 4] is rotated about the y axis.

$$
\mathbf{S A}=\int_{a}^{b} 2 \pi r \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{0}^{4} 2 \pi x \sqrt{1+(2 x)^{2}} d x=273.867
$$

whose value can be done with a u-substitution or a fnInt on a calculator.

Find the area of the surface formed by revolving the graph of $f(x)=x^{3}$ on the interval [0, I] about the x-axis.

$$
\begin{aligned}
& \quad \mathrm{S}=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x= \\
& =2 \pi \int_{0}^{1} x^{3} \sqrt{1+\left(3 x^{2}\right)^{2}} d x \approx 3.563 . \\
& \text { Can you solve this one by hand? } \\
& 2 \pi \int_{0}^{1} x^{3} \sqrt{1+9 x^{4}} d x \\
& =\frac{2 \pi}{36} \int_{0}^{1}\left(36 x^{3}\right)\left(1+9 x^{4}\right)^{1 / 2} d x=\frac{\pi}{18}\left[\frac{\left(1+9 x^{4}\right)^{3 / 2}}{3 / 2}\right]_{0}^{1}=\frac{\pi}{27}\left(10^{3 / 2}-1\right)
\end{aligned}
$$

Practice: p. 444 \#5, 7, 9, 35-43 odd

Quiz on Friday

