Section 7.8 Improper Integrals



* Improper integrals have limits of
integration that are infinite or the
function has a finite number of infinite
discontinuities on a certain interval.




* These integrals may DIVERGE (continue
to grow and grow) or CONVERGE to a
particular value (you will get a numerical
answer)



You cannot just look at the graph and tell.
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One of these converges, and the other diverges.
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) To integrate we cannot just plug in infinity, we
Example la: j _dX need to approach infinity. We need limits!
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Evaluate the integral and
substitute the limits of = lim (In b—In 1)
integration first. b—>c0
Then evaluate the limit. — o0 — O — OO

This integral diverges.
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This integral converges to |.



» Note that both I/x? and |/x approach 0 as
x — oo, but |/x* approaches faster than |/x.

> The values of |/x don’t decrease fast enough
for its integral to have a finite value.
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Example 2 jld_xx

This function is discontinuous at x = |,
so we must approach | from the right.
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Integral Diverges.



Try: [ = lim [ (4—x)™"dx
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Integral converges to 4.



3 dx The function 3
_[0 2 approaches 0O
(x-1)2  when x—1.
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converge.
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To evaluate this integral, break it into two parts at a convenient value.
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p.522 #1,5,9,23,27,31, 35, 39, 45.



Improper Integrals continued

Direct Comparison Test



Determine which values of p cause the integral to
converges.
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If P<1then b™"" gets bigger
and bigger as b — o , therefore
the integral diverges.

If P >1 then b has a negative

exponent and b*™* — 0,
therefore the integral converges.




Memorize:

oo |

dx 1sconvergentif p > 1 and divergentif p = 1.

P
JIX
Lower limit does not have to be |.

Knowing this “p — integral” is helpful.



When we cannot evaluate an integral directly, we first try to determine whether
it converges or diverges by comparing it to known integrals.

Comparison Test

Let f and g be continuous on [a, o) with 0< f (x) < g(x)forall x>a. Then

1. j:f(x)dx converges if fg(x)dx converges.

Anything below a convergent

‘ l function will also converge.
00 : l 00 :
2. _[a g(x)dx  divergesif _[a f(x)dx diverges.

4 Anything above a divergent
function will also diverge.
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Example 5:

»Sin? X The maximum value of Sin X =1 so:
L — dX
X sinx 1
0<——<— on [Lo)
X X
| 1 sin® x
Since 7 converges, — 7 converges.

How do we know |/x? converges?

Because |/x? is a p-integral with an exponent >1.



Example 6:
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Example 7:[oo 1
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Since the function we are
integrating is larger than a
convergent function, the
Direct Comparison Test is
inconclusive.



Homework

Gabriel’s Horn paradox worksheet
p.523 #57-62



