Section 7.8 Improper Integrals

- Improper integrals have limits of integration that are infinite or the function has a finite number of infinite discontinuities on a certain interval.

$$
\int_{1}^{\infty} \frac{d x}{x} \int_{-\infty}^{\infty} \frac{d x}{x^{2}+1} \int_{1}^{5} \frac{d x}{\sqrt{x-1}} \int_{-2}^{2} \frac{d x}{(x+1)^{2}}
$$

- These integrals may DIVERGE (continue to grow and grow) or CONVERGE to a particular value (you will get a numerical answer)

You cannot just look at the graph and tell.

One of these converges, and the other diverges.

Example Ia: $\int_{1}^{\infty} \frac{1}{x} d x$
To integrate we cannot just plug in infinity, we need to approach infinity. We need limits!

$$
\int_{1}^{\infty} \frac{1}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x=\lim _{b \rightarrow \infty}[\ln \mid x]_{1}^{b}
$$

Evaluate the integral and substitute the limits of integration first.

$$
=\lim _{b \rightarrow \infty}(\ln b-\ln 1)
$$

Then evaluate the limit.

$$
=\infty-0=\infty
$$

This integral diverges.

Example Ib: $\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{2}} d x$

$$
\begin{aligned}
\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{2}} d x & =\lim _{b \rightarrow \infty}\left[-\frac{1}{x}\right]_{1}^{b}=\lim _{b \rightarrow \infty}\left(-\frac{1}{b}+\frac{1}{1}\right) \\
& =\left(-\frac{1}{\infty}+\frac{1}{1}\right)=-0+1=1
\end{aligned}
$$

This integral converges to I.

Note that both I/x ${ }^{2}$ and I / x approach 0 as

 $x \rightarrow \infty$, but I/x ${ }^{2}$ approaches faster than I/x.- The values of I/x don't decrease fast enough for its integral to have a finite value.

Example 2
 $$
\int_{1}^{2} \frac{d x}{1-x}
$$

This function is discontinuous at $\mathrm{x}=\mathrm{I}$,

$$
\begin{gathered}
\int_{1}^{2} \frac{d x}{1-x}=\lim _{k \rightarrow 1^{+}} \int_{k}^{2} \frac{d x}{1-x}=\lim _{k \rightarrow 1^{+}}[-\ln |1-x|]_{k}^{2} \\
=\lim _{k \rightarrow 1^{+}}(-\ln |-1|+\ln |1-k|) \\
=-0+-\infty=-\infty
\end{gathered}
$$

Integral Diverges.

Try: $\int_{0}^{4} \frac{1}{\sqrt{4-x}} d x=\lim _{b \rightarrow 4-} \int_{0}^{b}(4-x)^{-1 / 2} d x$
Discontinuous at $\mathrm{x}=4$. Need to approach 4 from the left

$$
=\lim _{b \rightarrow 4-}\left[\frac{-(4-x)^{1 / 2}}{1 / 2}\right]_{0}^{b}
$$

$$
\begin{gathered}
\lim _{b \rightarrow 4-}\left[-2(4-b)^{1 / 2}+2(4-0)^{1 / 2}\right] \\
0+4=4 \\
\text { Integral converges to } 4
\end{gathered}
$$

Example 3:

$$
\begin{aligned}
& \text { Example 3: } \\
& \int_{0}^{3} \frac{d x}{(x-1)^{\frac{2}{3}}} \quad \begin{array}{l}
\text { The function } \\
\text { approaches } \infty \\
\text { when } x \rightarrow 1
\end{array} \\
& \int_{0}^{3} \frac{d x}{(x-1)^{\frac{2}{3}}}=\int_{0}^{1} \frac{d x}{(x-1)^{\frac{2}{3}}}+\int_{1}^{3} \frac{d x}{(x-1)^{\frac{2}{3}}}
\end{aligned}
$$

$\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(x-1)^{-\frac{2}{3}} d x+\lim _{c \rightarrow 1^{+}} \int_{c}^{3}(x-1)^{-\frac{2}{3}} d x$
Both integrals must converge for the given integral to converge.
$\left.\lim _{c \rightarrow 1^{-}} 3(x-1)^{\frac{1}{3}}\right|_{0} ^{c}+\left.\lim _{c \rightarrow 1^{+}} 3(x-1)^{\frac{1}{3}}\right|_{c} ^{3}$
$\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(x-1)^{-\frac{2}{3}} d x+\lim _{c \rightarrow 1^{+}} \int_{c}^{3}(x-1)^{-\frac{2}{3}} d x$

$$
\left.\lim _{c \rightarrow 1^{-}} 3(x-1)^{\frac{1}{3}}\right|_{0} ^{c}+\left.\lim _{c \rightarrow 1^{+}} 3(x-1)^{\frac{1}{3}}\right|_{c} ^{3}
$$

$$
\lim _{c \rightarrow 1^{-}}\left[3(c-1)^{\frac{1}{3}}-3(-1)^{\frac{1}{3}}\right]+\lim _{c \rightarrow 1^{+}}\left[3 \cdot 2^{\frac{1}{3}}-3\left(e^{-1}-1\right)^{\frac{1}{3}}\right]
$$

$$
(0+3)+(3 \sqrt[3]{2}-0)
$$

$$
3+3 \sqrt[3]{2}
$$

$$
\text { Example } 4 \int_{-\infty}^{+\infty} \frac{d x}{1+x^{2}}=\int_{-\infty}^{0} \frac{d x}{1+x^{2}}+\int_{0}^{+\infty} \frac{d x}{1+x^{2}}
$$

To evaluate this integral, break it into two parts at a convenient value.

$$
\begin{gathered}
\begin{array}{r}
\int_{-\infty}^{0} \frac{d x}{1+x^{2}}=\lim _{a \rightarrow-\infty} \int_{a}^{0} \frac{d x}{1+x^{2}}=\lim _{a \rightarrow-\infty}\left[\tan ^{-1} x\right]_{a}^{0}=\lim _{a \rightarrow-\infty}\left(\tan ^{-1} 0-\tan ^{-1} a\right) \\
\\
=0-\frac{-\pi}{2}=\frac{\pi}{2} \\
\begin{aligned}
& \int_{0}^{+\infty} \frac{d x}{1+x^{2}}=\lim _{b \rightarrow+\infty} \int_{0}^{b} \frac{d x}{1+x^{2}}=\lim _{b \rightarrow+\infty}\left[\tan ^{-1} x\right]_{b}^{b}= \lim _{b \rightarrow+\infty}\left(\tan ^{-1} b-\tan ^{-1} 0\right) \\
&=\frac{\pi}{2}-0=\frac{\pi}{2}
\end{aligned} \\
\int_{-\infty}^{+\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}+\frac{\pi}{2}=\pi
\end{array}
\end{gathered}
$$

p. 522 \#I, 5, 9, 23, 27, 3I, 35, 39, 45.

Improper Integrals continued Direct Comparison Test

Determine which values of p cause the integral to converges.

$$
\begin{gathered}
\int_{1}^{\infty} \frac{d x}{x^{P}} \quad \text { Try a negative value for } \mathrm{p}, \mathrm{p}=0, \mathrm{p}=\mathrm{I}, \mathrm{p}=2, \text { etc. } \\
\int_{1}^{\infty} \frac{d x}{x^{-2}}=\int_{1}^{\infty} x^{2} d x=\lim _{a \rightarrow \infty}\left[\frac{1}{3} x^{3}\right]_{1}^{a}=\infty-\frac{1}{3}=\infty \quad \begin{array}{l}
\text { All negative values of } \\
\text { of } \mathrm{p} \text { diverge }
\end{array} \\
\int_{1}^{\infty} \frac{d x}{x^{0}}=\int_{1}^{\infty} 1 d x=\lim _{a \rightarrow \infty}[x]_{1}^{a}=\infty-1=\infty \\
\int_{1}^{\infty} \frac{d x}{x^{1}}=\lim _{a \rightarrow \infty}[\ln x]_{1}^{a}=\ln \infty-0=\infty \\
\int_{1}^{\infty} \frac{d x}{x^{2}}=\int_{1}^{\infty} x^{-2} d x=\lim _{a \rightarrow \infty}\left[-1 x^{-1}\right]_{1}^{a}=-\frac{1}{\infty}--1=0+1=1 \\
\int_{1}^{\infty} \frac{d x}{x^{3 / 2}}=\int_{1}^{\infty} x^{-3 / 2} d x=\lim _{a \rightarrow \infty}\left[-2 x^{-1 / 2}\right]_{1}^{a}=-\frac{2}{\infty}--2=0+2=2
\end{gathered}
$$

$$
\begin{gathered}
\int_{1}^{\infty} \frac{d x}{x^{P}} \quad P>0 \\
\int_{1}^{\infty} x^{-P} d x
\end{gathered}
$$

$\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-P} d x$
$\left.\lim _{b \rightarrow \infty} \frac{1}{-P+1} x^{-P+1}\right|_{1} ^{b}$

$$
\lim _{b \rightarrow \infty} \frac{b^{-P+1}}{-P+1}-\frac{1^{-P+1}}{-P+1}
$$

If $\mathrm{P}<1$ then b^{-P+1} gets bigger and bigger as $b \rightarrow \infty$, therefore the integral diverges.

If $P>1$ then b has a negative exponent and $b^{-P+1} \rightarrow 0$, therefore the integral converges.

Memorize:

$\int_{1}^{\infty} \frac{1}{x^{p}} d x$ is convergent if $p>1$ and divergent if $p \leqslant 1$.
Lower limit does not have to be I.

Knowing this " p - integral" is helpful.

When we cannot evaluate an integral directly, we first try to determine whether it converges or diverges by comparing it to known integrals.

Comparison Test

Let f and g be continuous on $[a, \infty)$ with $0 \leq f(x) \leq g(x)$ for all $x \geq a$. Then 1. $\int_{a}^{\infty} f(x) d x$ converges if $\quad \int_{a}^{\infty} g(x) d x \quad$ converges.

2. $\int_{a}^{\infty} g(x) d x$ diverges if $\quad \int_{a}^{\infty} f(x) d x \quad$ diverges.

Anything above a divergent function will also diverge.

Example 5:

$\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$

The maximum value of $\sin x=1$ so:

$$
0 \leq \frac{\sin ^{2} x}{x^{2}} \leq \frac{1}{x^{2}} \quad \text { on } \quad[1, \infty)
$$

Since $\frac{1}{x^{2}}$ converges, $\frac{\sin ^{2} x}{x^{2}}$ converges.
How do we know I/x ${ }^{2}$ converges?

Because $\mathrm{I} / \mathrm{x}^{2}$ is a p -integral with an exponent $>\mathrm{I}$.

Example 6:

$$
\int_{1}^{\infty} \frac{1}{\sqrt{x^{2}-0.1}} d x
$$

$\sqrt{x^{2}-0.1}<x$ for positive values of x, so:

$$
\frac{1}{\sqrt{x^{2}-0.1}} \geq \frac{1}{x} \quad \text { on } \quad[1, \infty)
$$

Since $\frac{1}{x}$ diverges, $\frac{1}{\sqrt{x^{2}-0.1}}$ diverges.

Example 7: $\int_{2}^{\infty} \frac{1}{x^{2}-1} d x$

$$
\frac{1}{x^{2}-1} \geq \frac{1}{x^{2}}
$$

Since the function we are integrating is larger than a convergent function, the Direct Comparison Test is inconclusive.

Homework

Gabriel's Horn paradox worksheet p. 523 \#57-62

