
Section 7.8 Improper Integrals



 Improper integrals have limits of 

integration that are infinite or the 

function has a finite number of infinite 

discontinuities on a certain interval.
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 These integrals may DIVERGE (continue 

to grow and grow) or CONVERGE to a 

particular value (you will get a numerical 

answer)



You cannot just look at the graph and tell.
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One of these converges, and the other diverges.



Example 1a: dx
x
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1 To integrate we cannot just plug in infinity, we 

need to approach infinity.    We need limits!

Evaluate the integral and 

substitute the limits of 

integration first.

Then evaluate the limit.
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This integral diverges.
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This integral converges to 1.



 Note that both 1/x2 and 1/x approach 0 as 

x → ∞, but 1/x2 approaches faster than 1/x.

◦ The values of 1/x don’t decrease fast enough 

for its integral to have a finite value. 
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This function is discontinuous at x = 1, 

so we must approach 1 from the right.
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Integral Diverges.



Try: 
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Integral converges to 4.

Discontinuous at x = 4.

Need to approach 4 from 

the left

0  4



Example 3:
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Both integrals must converge 

for the given integral to 

converge.  
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To evaluate this integral, break it into two parts at a convenient value. 
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p. 522 #1, 5, 9, 23, 27, 31, 35, 39, 45.



Improper Integrals continued
Direct Comparison Test



Determine which values of p cause the integral to 

converges.
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Try a negative value for p, p = 0, p = 1, p = 2, etc.
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If           then b has a negative 

exponent and                  ,

therefore the integral converges.

1P 
1 0Pb  

If           then           gets bigger 

and bigger as              , therefore 

the integral diverges.
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Memorize:

Knowing this “p – integral” is helpful.

Lower limit does not have to be 1.



Comparison Test

     Let and be continuous on , with 0 for all . Thenf g a f x g x x a   

   1. converges if converges.
a a

f x dx g x dx
 

 

   2. diverges if diverges.
a a

g x dx f x dx
 

 

When we cannot evaluate an integral directly, we first try to determine whether 

it converges or diverges by comparing it to known integrals.

Anything below a convergent 

function will also converge.

Anything above a divergent 

function will also diverge.
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Because 1/x2 is a p-integral with an exponent  >1.

How do we know 1/x2 converges?
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Example 7:
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Since the function we are 

integrating is larger than a 

convergent function, the 

Direct Comparison Test is 

inconclusive.



Homework

Gabriel’s Horn paradox worksheet

p.523 #57-62


