
Section 9.2 Series



A sequence can be thought of as a list of numbers:

a1, a2, a3, a4,‧‧‧,an,‧‧‧

If we try to add the terms of an infinite sequence we get an 

expression of the Form

which is called an infinite series (or just a series) and is denoted, for 

short, by the symbol
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partial sums

S1=a1

S2=a1+a2

S3=a1+a2+a3

S4=a1+a2+a3+a4

and, in general,
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Sequence of Partial Sums:  S1, S2, S3, . . .. Sn

The sum of an infinite series is the limit of its 

sequence of partial sums.



Example: 

1 – 1 + 1 – 1 + 1 – . . . Converge or Diverge?  ( Does it have a finite sum? )

S1= 1

S2= 1 – 1 = 0

S3= 1 – 1 + 1 = 1

S4= 1 – 1 + 1 – 1 = 0

Sn={ 1, 0, 1, 0, . . . }

The sequence has 

no limit, so the 

series has no sum.  

The series diverges.
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NOTE: A general expression for sn is usually difficult to determine.

Converge or Diverge?
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Since finding a formula for the terms of the sequence of 

partial sums of an infinite series is sometimes difficult to 

find, we have several tests to determine the convergence 

of a series.

First let’s see what the terms of the sequence tells about the convergence of the series.

Does the sequence  an = 2n Converge or Diverge?        

Does the series               Converge or Diverge?
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Does the sequence                      Converge or Diverge?        

Does the series                      Con. or Div.?
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Does the sequence                    Converge or Diverge?         

Does the series                  Con. or Div.?
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Nth term test for divergence:  

Given         , If                  ,  then the series diverges.

(If the limit does equal zero, we do not know if the 

series converges or diverges)
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Properties of Series
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Telescopic Series
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Geometric Series
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Note that in this case we start counting from 

zero. Technically it doesn’t matter, but we have to 

be careful because the formula we will use starts 

always at n=0.

First term 

multiplied by r

Second term 

multiplied by r

Third term 

multiplied by r
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This is a geometric series in which you are multiplying by 

r to get each additional term

If we multiply both 

sides by r we get

If we subtract (2) from (1), we get
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This is the formula to generate the 

terms of the sequence of partial sums.
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So the limit of Sn as n approaches infinity gives you the sum of the 

infinite series.
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Therefore, if you recognize a series is geometric, i.e.    

If , the series diverges.

If , the series converges to        , where a is the first term 

and r is the common ratio.
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Examples:  Converge or Diverge?
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You can use series to change a repeating decimal to a fraction.

0.252525252525 . . .

=0.25 + 0.0025 + 0.000025 + …

a = 

r =

Sum =  


