Section 9.2 Series

A sequence can be thought of as a list of numbers:

$$
a_{1}, a_{2}, a_{3}, a_{4}, \cdots, a_{n}, \cdots
$$

If we try to add the terms of an infinite sequence we get an expression of the Form

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
$$

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

partial sums

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3} \\
& S_{4}=a_{1}+a_{2}+a_{3}+a_{4}
\end{aligned}
$$

and, in general, $\quad S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$
Sequence of Partial Sums: $S_{1}, S_{2}, S_{3}, \ldots . . S_{n}$
The sum of an infinite series is the limit of its sequence of partial sums.

Example:

$I-I+I-I+I-\ldots$ Converge or Diverge? (Does it have a finite sum?)

$$
\begin{aligned}
& S_{1}=1 \\
& S_{2}=1-1=0 \\
& S_{3}=1-1+1=1 \\
& S_{4}=1-1+1-1=0
\end{aligned}
$$

The sequence has no limit, so the series has no sum. The series diverges.

$$
S_{n}=\{1,0,1,0, \ldots\}
$$

Example ...

$$
\sum_{k=1}^{\infty} \frac{1}{k^{k}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots=1
$$

$$
s_{1}=\frac{1}{2}
$$

Pattern?

$$
s_{2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}
$$

$$
s_{n}=\frac{2^{n}-1}{2^{n}}
$$

$$
\begin{aligned}
& s_{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{3}{4}+\frac{1}{8}=\frac{7}{8} \\
& s_{4}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{7}{8}+\frac{1}{16}=\frac{15}{16}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \frac{2^{n}-1}{2^{n}}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{n}}\right)=1
$$

NOTE:A general expression for $\boldsymbol{S}_{\boldsymbol{n}}$ is usually difficult to determine.

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots+\frac{1}{2^{n}}+\ldots=1
$$

Since finding a formula for the terms of the sequence of partial sums of an infinite series is sometimes difficult to find, we have several tests to determine the convergence of a series.

First let's see what the terms of the sequence tells about the convergence of the series.

Does the sequence $a_{n}=2^{n}$ Converge or Diverge?

Does the series $\sum_{n=0}^{\infty} 2^{n}$ Converge or Diverge?

$$
\text { Does the sequence } a_{n}=\frac{n!}{2 n!+1} \text { Converge or Diverge? }
$$

Does the series $\sum_{n=0}^{\infty} \frac{n!}{2 n!+1}$
Con. or Div.?

Does the sequence $a_{n}=\frac{1}{n} \quad$ Converge or Diverge?

Does the series $\sum_{n=1}^{\infty} \frac{1}{n} \quad$ Con. or Div.?

Nth term test for divergence:

Given $\sum a_{n}$, If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series diverges.
(If the limit does equal zero, we do not know if the series converges or diverges)

Properties of Series

$\sum c a_{n}=c \sum a_{n}$

$\sum\left(a_{n} \pm b_{n}\right)=\sum a_{n} \pm \sum b_{n}$

Telescopic Series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)
$$

Converge or Diverge?

Converge or Diverge?

Geometric Series

$$
\begin{align*}
& S_{N}=\sum_{n=0}^{N} a \cdot r^{n} \quad \begin{array}{l}
\text { This is a geometric series in which you are multiplying by } \\
\mathrm{r} \text { to get each additional term }
\end{array} \\
& S_{N}=a+a \rho \cdot r+a / r^{2}+a \cdot \not \mu^{3}+\ldots+a / r^{N} \quad \text { (1) } \begin{array}{l}
\text { If we multiply both } \\
\text { sides by } r \text { we get }
\end{array} \\
& r \cdot S_{N}=a / r+a \cdot r^{2}+a \cdot r^{3}+\ldots+a / r^{N}+a \cdot r^{N+1}
\end{align*}
$$

If we subtract (2) from (I), we get

$$
\begin{aligned}
& S_{N}-r \cdot S_{N}=a-a \cdot r^{N+1} \\
& S_{N}(1-r)=\left(a-a r^{N+1}\right) \\
& S_{N}=\frac{\left(a-a r^{N+1}\right)}{1-r} \quad \begin{array}{l}
\text { This is the formula to generate the } \\
\text { terms of the sequence of partial sums. }
\end{array}
\end{aligned}
$$

$$
S_{N}=\frac{a-a r^{N+1}}{1-r}
$$

So the limit of S_{n} as n approaches infinity gives you the sum of the infinite series.

$$
\begin{aligned}
& I f|r|>1, \lim _{n \rightarrow \infty} \frac{a-a r^{n+1}}{1-r}=\frac{a-\infty}{1-r}=\infty \\
& I f|r|<1, \lim _{n \rightarrow \infty} \frac{a-a r^{n+1}}{1-r}=\frac{a-a \cdot 0}{1-r}=\frac{a}{1-r}
\end{aligned}
$$

Therefore, if you recognize a series is geometric, i.e. $\sum_{n=0}^{\infty} a \cdot r^{n}$
If $|r| \geq 1$, the series diverges.
If $|r|<1$, the series converges to $\frac{a}{1-r}$, where a is the first term and r is the common ratio.

Examples: Converge or Diverge?

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{2^{n}} \\
& \sum_{n=0}^{\infty} \frac{3}{2^{n}} \\
& \sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}
\end{aligned}
$$

You can use series to change a repeating decimal to a fraction.

$$
\begin{aligned}
& 0.252525252525 \ldots \\
& =0.25+0.0025+0.000025+\ldots \\
& a= \\
& r= \\
& \text { Sum }=
\end{aligned}
$$

