## Section 9.4 Comparison Tests

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} \frac{1}{2^{n}} \text { is a geometric series. } & \sum_{n=0}^{\infty} \frac{n}{2^{n}} \text { is not } \\
\sum_{n=0}^{\infty} \frac{1}{n^{2}} \text { is a p-series. } & \sum_{n=0}^{\infty} \frac{1}{n^{2}+1} \text { is not } \\
a_{n}=\frac{n}{\left(n^{2}+3\right)^{2}} \text { is easily integrated. } & a_{n}=\frac{n^{2}}{\left(n^{2}+3\right)^{2}} \text { is not }
\end{array}
$$

To check the convergence of an unknown series, compare it to a series you know.

## Direct Comparison Test (DCT)

For series with positive terms, let $\mathrm{o} \leq \mathrm{a}_{\mathrm{n}} \leq \mathrm{b}_{\mathrm{n}}$ for all n

If $\sum b_{n}$ converges, then $\sum a_{n}$ (something smaller) converges

If $\sum a_{n}$ diverges, then $\sum b_{n}$ (something larger) diverges

## Examples

Does $\sum_{n=1}^{\infty} \frac{1}{3^{n}+2}$ converge or diverge?

## Examples

Does $\sum_{n=1}^{\infty} \frac{5 \ln n}{2 n}$ converge or diverge?

## Try: $\sum_{n=1}^{\infty} \frac{1}{1 n^{2}+2}$



## Limit Comparison Test (LCT)

Given two series $\sum a_{n}$ and $\sum b_{n}$. Let's compare the terms of each using limits.

So if $b_{n}$ converges, $a_{n}$ also
If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$, then $a_{n} \approx b_{n}$. converges. If $b_{n}$ diverges, $a_{n}$ also diverges.

If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$, then $a_{n} \approx c b_{n}$.
So if $\mathrm{b}_{\mathrm{n}}$ converges, $\mathrm{a}_{\mathrm{n}}$ also converges. If $b_{n}$ diverges, $a_{n}$ also diverges.

The constant doesn't change the convergence of the series since it can be factored out.

## Limit Comparison Test (LCT)

 Given two series $\sum a_{n}$ and $\sum b_{n}$. Let's compare the terms of each using limits.If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, then $a_{n}<b_{n}$.
So if $b_{n}$ converges, the smaller $a_{n}$ also converges. If $\mathrm{b}_{\mathrm{n}}$ diverges, we don't know about $\mathrm{a}_{\mathrm{n}}$.
If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$, then $a_{n}>b_{n}$.
If $b_{n}$ diverges, the larger $a_{n}$ also diverges. If $b_{n}$ converges, we don't know about $\mathrm{a}_{\mathrm{n}}$.

## Limit Comparison Test (LCT)

For series with positive terms,
If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\underline{\mathbf{a} \text { finite, nonzero constant, then the series }}$
behave the same, both diverge or both converge.

## So what about $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ ?

## More examples: Converge or Diverge.

$\sum_{n=1}^{\infty} \frac{1}{3 n^{2}-4 n+5}$

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{3 n-2}}
$$

## More examples: Converge or Diverge.

$$
\sum_{n=1}^{\infty} \frac{n^{2}-10}{4 n^{5}+n^{3}}
$$

$$
\sum_{n=1}^{\infty} \frac{1}{n!}
$$

## Practice:

p. 573 \#1-25odd, 27-34

