Section 9.6 Ratio and Root Tests

Last 2 tests!!!

Geometric series have a constant ratio between terms. Other series have ratios that are not constant. We will look at the ratio between consecutive terms to determine convergence.

10.7.5 THEOREM (*Ratio Test for Absolute Convergence*). Let $\sum u_k$ be a series with nonzero terms and suppose that

$$\rho = \lim_{k \to +\infty} \frac{|u_{k+1}|}{|u_k|}$$

- (a) If $\rho < 1$, then the series $\sum u_k$ converges absolutely and therefore converges.
- (b) If $\rho > 1$ or if $\rho = +\infty$, then the series $\sum u_k$ diverges.
- (c) If $\rho = 1$, no conclusion about convergence or absolute convergence can be drawn from this test.

Use this test for exponential or factorial expressions.

Example

Use the ratio test for absolute convergence to determine whether the series converges.

(a)
$$\sum_{k=1}^{\infty} (-1)^k \frac{2^k}{k!}$$
 (b) $\sum_{n=1}^{\infty} \frac{n^2 2^{n+1}}{3^n}$

Example 5

Use the ratio test for absolute convergence to determine whether the series converges.

(a)
$$\sum_{k=1}^{\infty} (-1)^k \frac{2^k}{k!}$$
 (b) $\sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)!}{3^k}$
(a) $\rho = \lim_{k \to +\infty} \frac{|u_{k+1}|}{|u_k|} = \lim_{k \to +\infty} \frac{2^{k+1}}{(k+1)!} \cdot \frac{k!}{2^k} = \lim_{k \to +\infty} \frac{2}{k+1} = 0 < 1$
converges absolutely

Example

Use the ratio test for absolute convergence to determine whether the series converges.

- k

(a)
$$\sum_{k=1}^{\infty} (-1)^k \frac{2^k}{k!}$$
 (b) $\sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)!}{3^k}$
(b) $\rho = \lim_{k \to +\infty} \frac{|u_{k+1}|}{|u_k|} = \lim_{k \to +\infty} \frac{(2k+1)!}{3^{k+1}} \cdot \frac{3^k}{(2k-1)!} = \lim_{k \to +\infty} \frac{(2k+1)(2k)}{3} = +\infty$
diverges

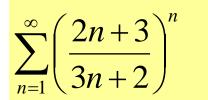
And finally... the Root Test

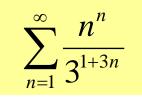
Let {a_n} be a sequence and assume that the following limit exists:

If
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$$
 then $\sum_{n=1}^{\infty} a_n$ converges absolutely
If $\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges
If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$, the Ratio Test is INCONCLUSIVE

Use this test for expressions raised to the nth power.

Examples





Try

