Section 9.6 Ratio and Root Tests

Last 2 tests!!!

Geometric series have a constant ratio between terms. Other series have ratios that are not constant. We will look at the ratio between consecutive terms to determine convergence.

```
10.7.5 THEOREM (Ratio Test for Absolute Convergence). Let \(\sum u_{k}\) be a series with nonzero
terms and suppose that
\(\rho=\lim _{k \rightarrow+\infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}\)
(a) If \(\rho<1\), then the series \(\sum u_{k}\) converges absolutely and therefore converges.
(b) If \(\rho>1\) or if \(\rho=+\infty\), then the series \(\sum u_{k}\) diverges.
(c) If \(\rho=1\), no conclusion about convergence or absolute convergence can be drawn
    from this test.
```

Use this test for exponential or factorial expressions.

Example

- Use the ratio test for absolute convergence to determine whether the series converges.
(a) $\sum_{k=1}^{\infty}(-1)^{k} \frac{k^{k}}{k!}$
(b)

$$
\sum_{n=1}^{\infty} \frac{n^{2} 2^{n+1}}{3^{n}}
$$

Example 5

- Use the ratio test for absolute convergence to determine whether the series converges.
(a) $\sum_{k=1}^{\infty}(-1)^{k} \frac{2^{k}}{k!}$
(b) $\sum_{k=1}^{\infty}(-1)^{k} \frac{(2 k-1)!}{3^{k}}$
(a)

$$
\rho=\lim _{k \rightarrow+\infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}=\lim _{k \rightarrow+\infty} \frac{2^{k+1}}{(k+1)!} \cdot \frac{k!}{2^{k}}=\lim _{k \rightarrow+\infty} \frac{2}{k+1}=0<1
$$

converges absolutely

Example

- Use the ratio test for absolute convergence to determine whether the series converges.
(a) $\sum_{k=1}^{\infty}(-1)^{k} \frac{2^{k}}{k!}$
(b) $\sum_{k=1}^{\infty}(-1)^{k} \frac{(2 k-1)!}{3^{k}}$
(b) $\quad \rho=\lim _{k \rightarrow+\infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}=\lim _{k \rightarrow+\infty} \frac{(2 k+1)!}{3^{k+1}} \cdot \frac{3^{k}}{(2 k-1)!}=\lim _{k \rightarrow+\infty} \frac{(2 k+1)(2 k)}{3}=+\infty$
diverges

And finally... the Root Test

- Let $\left\{a_{n}\right\}$ be a sequence and assume that the following limit exists:
- If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$ then $\sum_{n=1}^{\infty} a_{n}$ converges absolutely
- If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges
- If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$, the Ratio Test is INCONCLUSIVE

Use this test for expressions raised to the nth power.

Examples

$$
\sum_{n=1}^{\infty}\left(\frac{2 n+3}{3 n+2}\right)^{n}
$$

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{3^{1+3 n}}
$$

Try

$$
\sum_{n=2}^{\infty} \frac{n^{n}}{(\ln n)^{n}}
$$

$$
\sum_{n=1}^{\infty} \frac{e^{2 n}}{n^{n}}
$$

