
Section 9.8 Power Series
Series Part 2!



Geometric Series

Example:
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Converges to when 

a = r = 

Both a and r are constants.

But what if they weren’t?



Series as functions

Example:  







1

1
3)(

n

n
xxf n is the counter that creates each term in a 

single series.

x is a variable that creates different series.










4

1
f

 2f

When will converge? 







1

1
3)(

n

n
xxf



Vocabulary
Interval of Convergence:  the interval of the 

domain values, x, for which the resulting series 

will converge

Center of Convergence:  midpoint of interval 

of convergence

Radius of Convergence:  distance from the 

center of convergence to the endpoints of the 

interval of convergence
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Interval of convergence: (-1, 1)  

Center of Convergence:  x = 0   

Radius of convergence:  R = 1 
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Interval of convergence: Interval of convergence:     

Center of Convergence:     Center of Convergence:     

Radius of convergence:   Radius of convergence:   



Geometric Series are subsets of 

Power Series
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a and r are constants.
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a is a constant, r is a variable

Theses are geometric series

In a power series, the coefficients do not have to be constant.



Power Series
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General form usually starts with n = 0

This power series is centered at zero.
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This power series is centered at a.



For each power series find Cn and 

the center of convergence
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In a geometric series, you use the condition that in order to converge,               .

For a general power series, you must use the ratio test (or occasionally the root test). 
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Once you find the interval of convergence, you must check 

the endpoints because the ratio test is inconclusive if the 

limit equals 1 or -1.

Geometric series diverge at 1 and – 1.



There are 3 possible outcomes.
1. The series converges over some finite interval, centered at 

a,                   , R is the radius of convergence. 

(Diverges for                )

2. The series converges only at the center point, x = a. 

(Diverges everywhere else) R = 0.

3. Converges for all real numbers. R = ∞ .
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Case 1:
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Case 2:
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Case 3:
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This is a type of Bessel Function.  Among other 

applications, Bessel Functions are use to model 

vibrating surfaces like drum heads and heat 

conduction of circular surfaces.



You try:
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p. 605 #1 – 25 odd


