Section 9.8 Power Series

Series Part 2!

Geometric Series

$$
\begin{array}{ll}
\text { Example: } \sum_{n=1}^{\infty} 3\left(\frac{1}{2}\right)^{n-1} \quad \text { Converges to } \quad \text { when } \\
\mathrm{a}= & \mathrm{r}=
\end{array}
$$

Both a and r are constants.

But what if they weren't?

Series as functions

Example: $\quad f(x)=\sum_{n=1}^{\infty} 3(x)^{n-1}$
n is the counter that creates each term in a single series.
x is a variable that creates different series.

$$
\begin{aligned}
& f\left(\frac{1}{4}\right)= \\
& f(2)=
\end{aligned}
$$

When will $f(x)=\sum_{n=1}^{\infty} 3(x)^{n-1}$ converge?

Vocabulary

Interval of Convergence: the interval of the domain values, x, for which the resulting series will converge

Center of Convergence: midpoint of interval of convergence

Radius of Convergence: distance from the center of convergence to the endpoints of the interval of convergence

$$
\left.\begin{array}{ll}
f(x)=\sum_{n=1}^{\infty} 3(x)^{n-1} & \text { Interval of convergence: }(-\mathrm{I}, \mathrm{I}) \\
\text { Center of Convergence: } \mathrm{x}=0 \\
\text { Radius of convergence: } \mathrm{R}=\mathrm{I}
\end{array}\right\} \begin{aligned}
& f(x)=\sum_{n=1}^{\infty} 3(2 x-6)^{n-1} \\
& \text { Interval of convergence: } \\
& \text { Center of Convergence: }
\end{aligned}
$$

Geometric Series are subsets of Power Series

Theses are geometric series

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}+\cdots
$$

a and r are constants.

$$
f(x)=\sum_{n=1}^{\infty} a x^{n-1}=a+a x+a x^{2}+a x^{3}+\cdots+a x^{n-1}+\cdots
$$

a is a constant, r is a variable

In a power series, the coefficients do not have to be constant.

Power Series

General form usually starts with $n=0$

$$
f(x)=\sum_{n=0}^{\infty} C_{n} x^{n}=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\cdots+C_{n} x^{n}+\cdots
$$

This power series is centered at zero.

$$
f(x)=\sum_{n=0}^{\infty} C_{n}(x-a)^{n}=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+C_{3}(x-a)^{3}+\cdots+C_{n}(x-a)^{n}+\cdots
$$

This power series is centered at a.

For each power series find C_{n} and the center of convergence

$$
\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n!}
$$

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{2 \ln n}
$$

In a geometric series, you use the condition that in order to converge, $|r|<1$.

Geometric series diverge at I and - I.

For a general power series, you must use the ratio test (or occasionally the root test).

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1
$$

Once you find the interval of convergence, you must check the endpoints because the ratio test is inconclusive if the limit equals I or - I.

There are 3 possible outcomes.

I. The series converges over some finite interval, centered at $\mathrm{a},|x-a|<R \quad, \mathrm{R}$ is the radius of convergence.
(Diverges for $|x-a|>R$)
2. The series converges only at the center point, $x=a$. (Diverges everywhere else) $\mathrm{R}=0$.
3. Converges for all real numbers. $R=\infty$.

Case I:

$$
\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}
$$

Case 2:

$\sum_{n=0}^{s} n \cdot x^{n}$

Case 3:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}
$$

This is a type of Bessel Function. Among other applications, Bessel Functions are use to model vibrating surfaces like drum heads and heat conduction of circular surfaces.

You try:

$$
\sum_{n=0}^{\infty} \frac{n x^{n}}{2^{n+1}}
$$

p. 605 \#I - 25 odd

