SECTION 9.9 REPRESENTING FUNCTIONS
BY POWER SERIES
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FIND THE EQUIVALENT FUNCTION AND THE

INTERVAL OF CONVERGENCE



PRACTICE PROBLEMS

Find the function of x represented by the following series and
state the interval of convergence.
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NOW IN REVERSE, IF GIVEN A FUNCTION,

REPRESENT IT AS A POWER SERIES

If you look at the geometric series as a function, it looks rather like a polynomial, but of
infinite degree. Polynomials are important in mathematics for many reasons.

*Simplicity- they are easy to express, add, subtract, multiply, and occasionally to divide
*Closure- they stay polynomials when they are added, subtracted and multiplied
*Calculus- they are polynomials when they are differentiated or integrated.

The strategy of representing a function as a power series is useful for
*Integrating functions without elementary antiderivatives
*Solving differential equations

*Approximating functions by polynomials

Scientists do this to simplify the expressions they deal with.
Computer scientists do this to represent functions on calculators and computers
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The function and the series behave e

the same on the interval of N
convergence. Each partial sum is an

approximation of f(x). The more

terms, the better the approximation.




Example 1: Find a power series representation for the function and
determine the interval of convergence.
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Example 1 — Solution continued

» Since this 1s a geometric series, 1t converges
when [-x?| < 1, thatis, x> <1, or |x| < 1.

X

.. the interval of convergence 1s (-1, 1).

Geometric series diverge when r = 1, so we exclude the endpoints.
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Example 2: Write f(x) = ZL as a POWer series
+ X



Remember a power series is ZCan so you must do the following:
n=0

> Separate the coefficient part from the variable

»Combine common bases into a single exponential
expression

»Pull out (-1) if it’s an alternating series

»Adjust exponenton (-1)ton,n-1,orn+1
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Example 3: Write f(X) = >
+ X

as a power series

Another way to look at it:
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Readjust (-1) exponent
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Do the same thing to all
exponents.

Do the opposite to the starting
n value
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ARE THE SERIES EQUIVALENT?

ZOO n+1 x Expand to find out.
n
n=0 n=1

:x+x2—|—x3+--- =x+x2+x3+---

They generate the same sequence, they are equivalent
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ensure the same terms are
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They do not generate the same sequence,
they are not equivalent!!!



LET'S WRITE SERIES IN EXPANDED FORM

INSTEAD OF SUMMATION FORM
8 +8, +8;+8, + +a1r
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If problem does not Nth term Requwed'
specify, give 4 terms
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WRITE IN EXPANDED FORM

1
M=
f(x)= -2

2+ X



PRACTICE
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