SECTION 9.9 REPRESENTING FUNCTIONS BY POWER SERIES

$\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots \quad|x|<1$

We know this is a geometric series with $a=\quad$ and $r=$

So the sum would be
So, if - $1<\mathrm{x}<1,1+x+x^{2}+\cdots=\frac{1}{1-x}$

FIND THE EQUIVALENT FUNCTION AND THE

 INTERVAL OF CONVERGENCE$$
\sum_{n=0}^{\infty} 5^{n} x^{n}
$$

PRACTICE PROBLEMS

Find the function of x represented by the following series and state the interval of convergence.

1. $\sum_{n=0}^{\infty} 2^{n} x^{n}$

$$
f(x)=\frac{1}{1-2 x} \quad \frac{-1}{2}<x<\frac{1}{2}
$$

2. $\sum_{n=0}^{\infty}(-1)^{n}(x+1)^{n}$

$$
f(x)=\frac{1}{x+2} \quad-2<x<0
$$

3. $\sum_{n=0}^{\infty}\left(\frac{-1}{2}\right)^{n}(x-3)^{n}$

$$
f(x)=\frac{2}{x-1} \quad 1<x<5
$$

NOW IN REVERSE, IF GIVEN A FUNCTION, REPRESENT IT AS A POWER SERIES

If you look at the geometric series as a function, it looks rather like a polynomial, but of infinite degree. Polynomials are important in mathematics for many reasons.
-Simplicity- they are easy to express, add, subtract, multiply, and occasionally to divide
-Closure- they stay polynomials when they are added, subtracted and multiplied
-Calculus- they are polynomials when they are differentiated or integrated.
The strategy of representing a function as a power series is useful for

- Integrating functions without elementary antiderivatives
- Solving differential equations
-Approximating functions by polynomials

Scientists do this to simplify the expressions they deal with. Computer scientists do this to represent functions on calculators and computers

1

$=1+x+x^{2}+\cdots$

$1-x$

$S_{2}=1+x$

$S_{3}=1+x+x^{2}$
$S_{4}=1+x+x^{2}+x^{3}$

The function and the series behave the same on the interval of convergence. Each partial sum is an approximation of $f(x)$. The more terms, the better the approximation.

Example 1: Find a power series representation for the function and determine the interval of convergence.

$$
f(x)=\frac{1}{1+x^{2}}
$$

$$
f(x)=\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)} \quad \mathrm{a}=1 \quad \mathrm{r}=-\mathrm{x}^{2}
$$

$$
\sum_{n=0}^{\infty} a r^{n}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}
$$

$$
=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=1-x^{2}+x^{4}-x^{6}+x^{8}-\ldots
$$

Example 1 - Solution continued

- Since this is a geometric series, it converges when $\left|-x^{2}\right|<1$, that is, $x^{2}<1$, or $|x|<1$.
\therefore the interval of convergence is $(-1,1)$.

Geometric series diverge when $\mathrm{r}=1$, so we exclude the endpoints.

Example 2: Write $f(x)=\frac{1}{2+x}$ as a power series

$$
f(x)=\frac{a}{1-r}
$$

Remember a power series is $\sum_{n=0}^{\infty} C_{n} x^{n}$ so you must do the following:
>Separate the coefficient part from the variable
$>$ Combine common bases into a single exponential expression
$>$ Pull out (-1) if it's an alternating series
$>$ Adjust exponent on (-1) to $\mathrm{n}, \mathrm{n}-1$, or $\mathrm{n}+1$

Example 3: Write $f(x)=\frac{x^{3}}{2+x}$ as a power series

$$
f(x)=\frac{a}{1-r}
$$

Another way to look at it:

LET'S ADJUST THE X EXPONENT

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n+3}= & \sum_{n=?}^{\infty} \frac{(-1)^{?}}{2^{?}} x^{n} \\
& \sum_{n=?}^{\infty} \frac{(-1)^{n-3}}{2^{n-2}} x^{n}
\end{aligned}
$$

Do the same thing to all exponents.

Do the opposite to the starting n value
$\sum_{n=3}^{\infty} \frac{(-1)^{n-3}}{2^{n-2}} x^{n}$
Readjust (-1) exponent to $\mathrm{n}, \mathrm{n}-1$, or $\mathrm{n}+1$

$$
\sum_{n=3}^{\infty} \frac{(-1)^{n-1}}{2^{n-2}} x^{n}
$$

YOU TRY

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3^{n-1}} x^{n+2}
$$

ARE THE SERIES EQUIVALENT?

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} x^{n+1} & \sum_{n=1}^{\infty} x^{n} \quad \text { Expand to find } \\
=x+x^{2}+x^{3}+\cdots & =x+x^{2}+x^{3}+\cdots
\end{array}
$$

They generate the same sequence, they are equivalent

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} x^{2 n+1} & \sum_{n=1}^{\infty} x^{2 n} \begin{array}{l}
\begin{array}{l}
\text { When adjusting and simplifying, } \\
\text { ensure the same terms are } \\
\text { generated. }
\end{array} \\
=x+x^{3}+x^{5}+\cdots
\end{array}==x^{2}+x^{4}+x^{6} \cdots
\end{array}
$$

They do not generate the same sequence, they are not equivalent!!!

LET'S WRITE ŞERIES IN EXPANDED FORM INSTEAD OF SUMMATION FORM

$f(x)=\frac{x^{3}}{2+x}$

WRITE IN EXPANDED FORM
 $f(x)=\frac{1}{1+x^{2}}$

$$
f(x)=\frac{1}{2+x}
$$

PRACTICE

$$
\begin{aligned}
& f(x)=\frac{1}{1+3 x}=1-3 x+9 x^{2}-27 x^{3}+\cdots+(-1)^{n} 3^{n} x^{n}+\cdots \\
& \begin{array}{l}
a=1 \quad r=-3 x \quad(1)(-3 x)^{n} \\
f(x)=\frac{x}{1-2 x} \quad=x+2 x^{2}+4 x^{3}+8 x^{4} \cdots+2^{n} x^{n+1}+\cdots \\
\begin{array}{l}
a=x \quad r=2 x \quad(x)(2 x)^{n} \\
f(x)=\frac{3}{1-x^{2}} \quad=3+3 x^{2}+3 x^{4}+3 x^{6} \cdots+3 x^{2 n}+\cdots \\
a=3 \quad r=x^{2} \\
(3)\left(x^{2}\right)^{n}
\end{array}
\end{array} . l
\end{aligned}
$$

