Taylor Series

Section 9.10

Geometric Series

Power Series

Taylor Series

Maclaurin Series

We found power series representations when functions

or their integrals or derivatives were of form

```
a
```

$1-r$

$$
f(x)=\frac{1}{1-2 x} \quad f(x)=\tan ^{-1} x
$$

Today, our goal is the same but our method is different.

Taylor Series

Brook Taylor was an accomplished musician and painter. He did research in a variety of areas, but is most famous for his development of ideas regarding infinite series.

The Taylor series is named after the English mathematician Brook Taylor (1685-1731).

The Maclaurin series is named for the Scottish mathematician Colin Maclaurin (1698-1746).

Brook Taylor 1685-1731

Colin Maclaurin 1698-1746

Consider
 $f(x)=\cos x$

This is not in $\frac{a}{1-r}$ form, nor is its derivative or integral.

But we still want to find a power series for it.

$$
\cos x=\sum_{n=0}^{\infty} ?
$$

A series gives us a means to evaluate functions like these using polynomials.
$f(x)=\cos x=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots+c_{n} x^{n}+\cdots$
Where is the series centered?
What happens when $x=0$?
Everything drops out past the first term so:

$$
\cos 0=c_{0} \quad c_{0}=1
$$

$\cos x=1+\cdots$
We have our first term!
$f(x)=\cos x=1+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots+c_{n} x^{n}+\cdots$
Let's take the derivative of each side
$f^{\prime}(x)=-\sin x=c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+\cdots+n c_{n} x^{n-1}+\cdots$
What happens when $x=0$?

$$
-\sin 0=c_{1} \quad c_{1}=0
$$

$$
f^{\prime}(x)=-\sin x=0+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+\cdots+n c_{n} x^{n-1}+\cdots
$$

Let's take the $2^{\text {nd }}$ derivative of each side

$$
\begin{gathered}
f^{\prime \prime}(x)=-\cos x=2 c_{2}+2 \cdot 3 c_{3} x+3 \cdot 4 c_{4} x^{2}+\cdots+(n-1) n c_{n} x^{n-2} \\
\text { Let } x=0 . \\
-\cos 0=2 c_{2} \quad c_{2}=-\frac{1}{2}
\end{gathered}
$$

$$
\cos x=1+0 x-\frac{1}{2} x^{2}+\cdots
$$

$f^{\prime \prime}(x)=-\cos x=2 c_{2}+2 \cdot 3 c_{3} x+3 \cdot 4 c_{4} x^{2}+\cdots+(n-1) n c_{n} x^{n-2}$

Let's take the $3^{\text {rd }}$ derivative of each side
$f^{\prime \prime \prime}(x)=\sin x=0+2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} x+\cdots+(n-2)(n-1) n c_{n} x^{n-3}$
Let $x=0$

$$
\begin{aligned}
& \sin 0=2 \cdot 3 c_{3} \\
& 0=2 \cdot 3 c_{3}
\end{aligned} \quad 0=c_{3}
$$

$$
\cos x=1+0 x-\frac{1}{2} x^{2}+0 x^{3}+\cdots
$$

$f^{\prime \prime \prime}(x)=\sin x=0+2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} x+\cdots+(n-2)(n-1) n c_{n} x^{n-3}$
Let's take the $4^{\text {th }}$ derivative of each side

$$
\begin{gathered}
f^{i v}(x)=\cos x=0+2 \cdot 3 \cdot 4 c_{4}+\cdots+(n-3)(n-2)(n-1) n c_{n} x^{n-4} \\
\text { Let } x=0 \\
\cos 0=2 \cdot 3 \cdot 4 c_{4} \quad \frac{1}{4 \cdot 3 \cdot 2}=c_{3} \\
1=2 \cdot 3 \cdot 4 c_{3}
\end{gathered}
$$

$$
\cos x=1+0 x-\frac{1}{2} x^{2}+0 x^{3}+\frac{1}{4!} x^{4} \cdots
$$

We could continue. . .
$\cos x=1+0 x-\frac{1}{2} x^{2}+0 x^{3}+\frac{1}{4!} x^{4}+0 x^{5}-\frac{1}{6!} x^{6}+\cdots$

$$
\cos x=1+0 x-\frac{1}{2} x^{2}+0 x^{3}+\frac{1}{4!} x^{4}+0 x^{5}-\frac{1}{6!} x^{6}+\cdots
$$

$$
\cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{?} x^{?}}{?}
$$

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

What is the interval of convergence?

$$
y=\cos x
$$

$$
P(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\frac{x^{10}}{10!} \cdots
$$

The more terms we add, the better our approximation.

Let's generalize Power Series centered at $\mathrm{x}=\mathrm{a}$

$$
\begin{gathered}
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4} \cdots+c_{n} x^{n} \\
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+\cdots+n c_{n} x^{n-1} \\
f^{\prime \prime}(x)=2 c_{2}+3 \cdot 2 c_{3}(x-a)+4 \cdot 3 c_{4}(x-a)^{2}+\cdots+(n-1) n c_{n} x^{n-2} \\
f^{\prime \prime \prime}(x)=3 \cdot 2 c_{3}+4 \cdot 3 \cdot 2 c_{4}(x-a)+\cdots+(n-2)(n-1) n c_{n} x^{n-3} \\
f^{n}(x)=n!C_{n}+\cdots \\
f^{n}(a)=n!C_{n} \\
\frac{f^{n}(a)}{n!}=C_{n}
\end{gathered}
$$

Taylor Series

If f has derivatives of all orders in an open interval I containing a, then for each positive integer n and for each x in I :

$$
\begin{gathered}
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{gathered}
$$

A Taylor series centered at $\mathrm{x}=0$, is known as a MacLaurin Series.

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^{n}
$$

Find the Taylor Series of the function $f(x)=e^{x}$ and its radius of convergence centered at $\mathrm{x}=0$

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Find the Taylor Series of the function $f(x)=\ln x$ and its radius of convergence centered at $\mathrm{x}=1$

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Important Maclaurin Series and Their Radii of Convergence
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$
$R=\infty$
$\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
$R=\infty$
$\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
$R=\infty$

MEMORIZE: these Maclaurin Series, then use them to create other series.
Remember: Graphically, sine is a odd function and cosine is an even function

If the series is centered a value other than zero, you must derive the series.

Find the Taylor Series of the function $f(x)=\frac{e^{2 x}}{x^{3}}$
and its radius of convergence centered at $\mathrm{x}=0$

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \quad \text { Substitute } x i \text { for } x
$$

$$
e^{x i}=1+x i+\frac{(x i)^{2}}{2!}+\frac{(x i)^{3}}{3!}+\frac{(x i)^{4}}{4!}+\frac{(x i)^{5}}{5!}+\frac{(x i)^{6}}{6!}+\cdots
$$

$$
e^{x i}=1+x i+\frac{x^{2} i^{2}}{2!}+\frac{x^{3} i^{3}}{3!}+\frac{x^{4} i^{4}}{4!}+\frac{x^{5} i^{5}}{5!}+\frac{x^{6} i^{6}}{6!}+\cdots
$$

$$
e^{x i}=1+x i-\frac{x^{2}}{2!}-\frac{x^{3} i}{3!}+\frac{x^{4}}{4!}+\frac{x^{5} i}{5!}-\frac{x^{6}}{6!}+\cdots \quad \text { Factor out the } i \text { terms. }
$$

$$
e^{x i}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+i\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)
$$

$$
e^{x=}=1-\frac{x^{2}}{2!} \frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+i\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)
$$

This is the series for cosine.

$$
\begin{gathered}
e^{x i}=\cos (x)+i \sin (x) \quad \text { Let } \quad x=\pi \\
e^{i \pi}=\cos (\pi)+i \sin (\pi) \\
e^{i \pi}=-1+i \cdot 0
\end{gathered}
$$

$$
e^{i \pi}+1=0
$$

This amazing identity contains the five most famous numbers in mathematics, and shows that they are interrelated.

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

$$
\frac{f^{n}(a)}{n!}=C_{n} \quad \begin{aligned}
& \text { If you know the derivative, you can find } \\
& \text { the coefficient. }
\end{aligned}
$$

$$
f^{n}(a)=n!C_{n} \quad \begin{aligned}
& \text { If you know the coefficient, you can find the } \\
& \text { derivative }
\end{aligned}
$$

Given: $f(x)=1-3 x^{2}+5 x^{4}+8 x^{6}+\cdots$

Is there a relative maximum, minimum or neither at $f(0)$?

$$
\frac{f^{n}(a)}{n!}=C_{n} \quad f^{n}(a)=n!C_{n}
$$

Given: $f(x)=1+2 x-3 x^{2}+6 x^{4}+7 x^{5}+\cdots$
Is there a relative maximum, minimum or neither at $f(0)$?

Is $f(x)$ increasing or decreasing at $x=0$?

Is $f(x)$ concave up or concave down at $x=0$?

