CALCULUS BC

WORKSHEET 2 ON TAYLOR POLYNOMIALS
Work the following on notebook paper. Use your calculator only on problem 7. Show all work.

1. Find a fifth-degree Maclaurin polynomial for $f(x)=\sin (3 x)$.
2. Find a fifth-degree Taylor polynomial for $f(x)=\ln (x-1)$ centered at $x=2$.
3. Find a fourth-degree Taylor polynomial for $f(x)=e^{(x-4)}$ centered at $x=4$.
4. Suppose the function $f(x)$ is approximated near $x=0$ by a third-degree Taylor polynomial $P_{3}(x)=-3+7 x^{2}-2 x^{3}$. Give the value of:
(a) Give the value of: $f(0), f^{\prime}(0), f^{\prime \prime}(0)$, and $f^{\prime \prime \prime}(0)$.
(b) Does f have a local maximum, a local minimum, or neither at $x=0$? Justify your answer.
5. (a) Find a fourth-degree Maclaurin approximation for $f(x)=\cos x$.
(b) Use your answer to (a) to find $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.
6. (a) Find a third-degree Maclaurin approximation for $f(x)=\frac{1}{1-2 x}$..
(b) Use your answer to (a) to find $\lim _{x \rightarrow 0} \frac{f(x)-1}{x}$.
7. (a) Find a seventh-degree Maclaurin approximation for $f(x)=\sin x$.
(b) Use your answer to (a) to approximate the value of $\int_{0}^{1} \frac{\sin t}{t} d t$ so that the error in your approximation is less than $\frac{1}{500}$. Justify your answer.
(c) Use your calculator to find the actual value of $\int_{0}^{1} \frac{\sin t}{t} d t$. What is the error in the approximation you found in (b)?

Answers to Worksheet 2 on Taylor Polynomials

1. $3 x-\frac{27 x^{3}}{3!}+\frac{243 x^{5}}{5!} \quad$ 2. $(x-2)-\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}-\frac{(x-2)^{4}}{4}+\frac{(x-2)^{5}}{5}$
2. $1+(x-4)+\frac{(x-4)^{2}}{2!}+\frac{(x-4)^{3}}{3!}+\frac{(x-4)^{4}}{4!}$
3. (a) $f(0)=-3, f^{\prime}(0)=0, f^{\prime \prime}(0)=7 \cdot 2$! or $14, f^{\prime \prime \prime}(0)=-2 \cdot 3$! or -6
(b) Since $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)$ is positive, f has a local minimum at $x=0$ by the Second Derivative Test.
$\begin{array}{ll}\text { 5. (a) } 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} & \text { (b) } \frac{1}{2}\end{array}$
4. (a) $1+2 x+4 x^{2}+8 x^{3}$
(b) 2
5. (a) $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}$
(c) $0.946,0.002$
(b) $\frac{17}{18}$. Since the terms of the series are alternating, decreasing in magnitude, and having a limit of 0 , the \mid Error $\left\lvert\,<\frac{1}{600}<\frac{1}{500}\right.$
